You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
First published 1992; Re-issued 2008; Reprinted with Introduction 2022.
The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations read...
In this volume, Olga A. Ladyzhenskaya expands on her highly successful 1991 Accademia Nazionale dei Lincei lectures. The lectures were devoted to questions of the behaviour of trajectories for semigroups of nonlinear bounded continuous operators in a locally non-compact metric space and for solutions of abstract evolution equations. The latter contain many initial boundary value problems for dissipative partial differential equations. This work, for which Ladyzhenskaya was awarded the Russian Academy of Sciences' Kovalevskaya Prize, reflects the high calibre of her lectures; it is essential reading for anyone interested in her approach to partial differential equations and dynamical systems. This edition, reissued for her centenary, includes a new technical introduction, written by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik, surveying Ladyzhenskaya's works in the field and subsequent developments influenced by her results.
In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, ...
The main topics in this volume reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered is the set of Navier-Stokes equations and their solutions.
This well-organized and coherent collection of papers leads the reader to the frontiers of present research in the theory of nonlinear partial differential equations and the calculus of variations and offers insight into some exciting developments. In addition, most articles also provide an excellent introduction to their background, describing extensively as they do the history of those problems presented, as well as the state of the art and offer a well-chosen guide to the literature. Part I contains the contributions of geometric nature: From spectral theory on regular and singular spaces to regularity theory of solutions of variational problems. Part II consists of articles on partial differential equations which originate from problems in physics, biology and stochastics. They cover elliptic, hyperbolic and parabolic cases.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
This book presents an expansion of the highly successful lectures given by Professor Ladyzhenskaya at the University of Rome, 'La Sapienza', under the auspices of the Accademia dei Lencei. The lectures were devoted to questions of the behaviour of trajectories for semi-groups of non-linear bounded continuous operators in a locally non-compact metric space and for solutions of abstract evolution equations. The latter contain many boundaries value problems for partial differential equations of a dissipative type. Professor Ladyzhenskaya was an internationally renowned mathematician and her lectures attracted large audiences. These notes reflect the high calibre of her lectures and should prove essential reading for anyone interested in partial differential equations and dynamical systems.