You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A self-contained introduction to linear programming using MATLAB® software to elucidate the development of algorithms and theory. Exercises are included in each chapter, and additional information is provided in two appendices and an accompanying Web site. Only a basic knowledge of linear algebra and calculus is required.
Computational Optimization: A Tribute to Olvi Mangasarian serves as an excellent reference, providing insight into some of the most challenging research issues in the field. This collection of papers covers a wide spectrum of computational optimization topics, representing a blend of familiar nonlinear programming topics and such novel paradigms as semidefinite programming and complementarity-constrained nonlinear programs. Many new results are presented in these papers which are bound to inspire further research and generate new avenues for applications. An informal categorization of the papers includes: Algorithmic advances for special classes of constrained optimization problems Analysis of linear and nonlinear programs Algorithmic advances B- stationary points of mathematical programs with equilibrium constraints Applications of optimization Some mathematical topics Systems of nonlinear equations.
This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization idea...
Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. "Extremely well-written and logical, with short and elegant proofs." — MAA Reviews. 1958 edition.
This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.
Easy-to-read classic, covering Wolfe's method and the Kuhn-Tucker theory.
This book provides a thorough and careful introduction to the theory and practice of scientific computing at an elementary, yet rigorous, level, from theory via examples and algorithms to computer programs. The original FORTRAN programs have been rewritten in MATLAB and now appear in a new appendix and online, offering a modernized version of this classic reference for basic numerical algorithms.
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
This book provides a unified view of tomographic techniques and an in-depth treatment of reconstruction algorithms.