You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains contributed papers authored by participants of a Conference on Differential Equations and Dynamical Systems which was held at the Instituto Superior Tecnico (Lisbon, Portugal). The conference brought together a large number of specialists in the area of differential equations and dynamical systems and provided an opportunity to celebrate Professor Waldyr Oliva's 70th birthday, honoring his fundamental contributions to the field. The volume constitutes anoverview of the current research over a wide range of topics, extending from qualitative theory for (ordinary, partial or functional) differential equations to hyperbolic dynamics and ergodic theory.
This volume is dedicated to Francois Treves, who made substantial contributions to the geometric side of the theory of partial differential equations (PDEs) and several complex variables. One of his best-known contributions, reflected in many of the articles here, is the study of hypo-analytic structures. An international group of well-known mathematicians contributed to the volume. Articles generally reflect the interaction of geometry and analysis that is typical of Treves's work, such as the study of the special types of partial differential equations that arise in conjunction with CR-manifolds, symplectic geometry, or special families of vector fields. There are many topics in analysis and PDEs covered here, unified by their connections to geometry. The material is suitable for graduate students and research mathematicians interested in geometric analysis of PDEs and several complex variables.
Presents current research and future trends in the theory of several complex variables and PDE. Of note are two survey articles, the first presenting recent results on the solvability of complex vector fields with critical points, while the second concerns the Lie group structure of the automorphism groups of CR manifolds.
The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.
Using only the very elementary framework of finite probability spaces, this book treats a number of topics in the modern theory of stochastic processes. This is made possible by using a small amount of Abraham Robinson's nonstandard analysis and not attempting to convert the results into conventional form.
"The book has two main parts. The first is devoted to the Poincare conjecture, characterizations of PL-manifolds, covering quadratic forms of links and to categories in low dimensional topology that appear in connection with conformal and quantum field theory.
Covers phase space analysis methods, including microlocal analysis, and their applications to physics Treats the linear and nonnlinear aspects of the theory of PDEs Original articles are self-contained with full proofs; survey articles give a quick and direct introduction to selected topics evolving at a fast pace Excellent reference and resource for grad students and researchers in PDEs and related fields
A significant part of the 2004 Summer Research Conference on Algebraic Geometry (Snowbird, UT) was devoted to lectures introducing the participants, in particular, graduate students and recent Ph.D.'s, to a wide swathe of algebraic geometry and giving them a working familiarity with exciting, rapidly developing parts of the field. One of the main goals of the organizers was to allow the participants to broaden their horizons beyond the narrow area in which they are working. A fine selection of topics and a noteworthy list of contributors made the resulting collection of articles a useful resource for everyone interested in getting acquainted with the modern topic of algebraic geometry. The book consists of ten articles covering, among others, the following topics: the minimal model program, derived categories of sheaves on algebraic varieties, Kobayashi hyperbolicity, groupoids and quotients in algebraic geometry, rigid analytic varieties, and equivariant cohomology. Suitable for independent study, this unique volume is intended for graduate students and researchers interested in algebraic geometry.
Most of the papers in this book deal with the theory of Riemann surfaces (moduli problems, automorphisms, etc.), abelian varieties, theta functions, and modular forms. Some of the papers contain surveys on the recent results in the topics of current interest to mathematicians, whereas others contain new research results.