Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Berkeley Problems in Mathematics
  • Language: en
  • Pages: 614

Berkeley Problems in Mathematics

This book collects approximately nine hundred problems that have appeared on the preliminary exams in Berkeley over the last twenty years. It is an invaluable source of problems and solutions. Readers who work through this book will develop problem solving skills in such areas as real analysis, multivariable calculus, differential equations, metric spaces, complex analysis, algebra, and linear algebra.

Berkeley Problems in Mathematics
  • Language: en
  • Pages: 612

Berkeley Problems in Mathematics

This book collects approximately nine hundred problems that have appeared on the preliminary exams in Berkeley over the last twenty years. It is an invaluable source of problems and solutions. Readers who work through this book will develop problem solving skills in such areas as real analysis, multivariable calculus, differential equations, metric spaces, complex analysis, algebra, and linear algebra.

Problems and Solutions in Mathematics
  • Language: en
  • Pages: 804

Problems and Solutions in Mathematics

This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The mathematical problems cover six aspects of graduate school mathematics: Algebra, Topology, Differential Geometry, Real Analysis, Complex Analysis and Partial Differential Equations. While the depth of knowledge involved is not beyond the contents of the textbooks for graduate students, discovering the solution of the problems requires a deep understanding of the mathematical principles plus skilled techniques. For students, this book is a valuable complement to textbooks. Whereas for lecturers teaching graduate school mathematics, it is a helpful reference.

Introduction to Analysis
  • Language: en
  • Pages: 270

Introduction to Analysis

Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

Pell’s Equation
  • Language: en
  • Pages: 220

Pell’s Equation

Pell's equation is part of a central area of algebraic number theory that treats quadratic forms and the structure of the rings of integers in algebraic number fields. It is an ideal topic to lead college students, as well as some talented and motivated high school students, to a better appreciation of the power of mathematical technique. Even at the specific level of quadratic diophantine equations, there are unsolved problems, and the higher degree analogues of Pell's equation, particularly beyond the third, do not appear to have been well studied. In this focused exercise book, the topic is motivated and developed through sections of exercises which will allow the readers to recreate known theory and provide a focus for their algebraic practice. There are several explorations that encourage the reader to embark on their own research. A high school background in mathematics is all that is needed to get into this book, and teachers and others interested in mathematics who do not have (or have forgotten) a background in advanced mathematics may find that it is a suitable vehicle for keeping up an independent interest in the subject.

Probability Through Problems
  • Language: en
  • Pages: 262

Probability Through Problems

This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.

All the Mathematics You Missed
  • Language: en
  • Pages: 380

All the Mathematics You Missed

None

Functional Equations and How to Solve Them
  • Language: en
  • Pages: 139

Functional Equations and How to Solve Them

Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.

The William Lowell Putnam Mathematical Competition
  • Language: en
  • Pages: 164

The William Lowell Putnam Mathematical Competition

The Putnam Competition has since 1928 been providing a challenge to gifted college mathematics students. This book, the second of the Putnam Competition volumes, contains problems with their solutions for the years 1965-1984. Additional solutions are presented for many of the problems. Included is an essay on recollections of the first Putnam Exam by Herbert Robbins, as well as appendices listing the winning teams and students from 1965 through 1984. This volume offers the problem solver an enticing sample of challenging problems and their solutions. In 1980, the MAA published the first William Lowell Putnam Mathematical Competition book, covering the contest from 1938 to 1964. In 2002 the third of the Putnam problem books appeared, covering the years 1985 through 2000. All three of these books belong on the bookshelf of students, teachers, and all interested in problem solving.

Unsolved Problems in Number Theory
  • Language: en
  • Pages: 455

Unsolved Problems in Number Theory

Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane’s Online Encyclopedia of Integer Sequences, at the end of several of the sections.