You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fuel cells continue to be heralded as the energy source of the future, and every year an immense amount of research time and money is devoted making them more economically and technically viable. Fuel Cells Compendium brings together an up-to-date review of the literature and commentary surrounding fuel cells research. Covering all relevant disciplines from science to engineering to policy, it is an exceptional resource for anyone with an invested interest in the field. - Provides an comprehensive selection of reviews and other industrially focused material on fuel cells research - Broadly scoped to encompass many disciplines, from science to engineering, to applications and policy - In-depth coverage of the two major types of fuel cells: Ceramic (Solid Oxide) and Polymers (Proton Exchange Membranes)
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.
The electronics industry underwent a rapid evolution from thick to thin films during the last decade. Electrochemical technology played an important and often decisive role in the direction of this evolution. Applications include plating through mask technology, plating for thin film heads, plating for high density magnetic thin film, selective etching technology, etc. New electrochemical approaches have also been developed which will play key roles in the electronics industry. This book reports on the latest progress in electrochemical processes, including fundamentals and applications. Additional volumes dealing with more specific applications of electrochemistry are also planned.
The definitive resource for electroplating, now completely up to date With advances in information-age technologies, the field of electroplating has seen dramatic growth in the decade since the previous edition of Modern Electroplating was published. This expanded new edition addresses these developments, providing a comprehensive, one-stop reference to the latest methods and applications of electroplating of metals, alloys, semiconductors, and conductive polymers. With special emphasis on electroplating and electrochemical plating in nanotechnologies, data storage, and medical applications, the Fifth Edition boasts vast amounts of new and revised material, unmatched in breadth and depth by ...
This series, formerly edited by Heinz Gerischer and Charls V. Tobias, now edited by Richard C. Alkire and Dieter M. Kolb, has been warmly welcomed by scientists world-wide which is reflected in the reviews of the previous volumes: "This is an essential book for researchers in electrochemistry; it covers areas of both fundamental and practical importance, with reviews of high quality. The material is very well presented and the choice of topics reflects a balanced editorial policy that is welcomed." —The Analyst "All the contributions in this volume are well up to the standard of this excellent series and will be of great value to electrochemists.... The editors again deserve to be congratulated on this fine collection of reviews." —Journal of Electroanalytical Chemistry and Interfacial Chemistry "...competently and clearly written." —Berichte der Bunsen- Gesellschaft für Physikalische Chemie
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: A thorough and mathematical treatment of periodic phenomena, with consideration of new theories about the transition between `order' and `chaos'; Impedance spectroscopy as applied to the study of kinetics and mechanisms of electrode processes; The use of stoichiometric numbers in mechanism analysis; The electro-osmotic dewatering of clays with important implications for the processing of industrial waste and geotechnical; stabilization; Magnetic effects in electrolytic processes and the electrolytic Hall effect; and The computer analysis and modeling of mass transfer and fluid flow. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
A one-stop resource for both researchers and development engineers, this comprehensive handbook serves as a daily reference, replacing heaps of individual papers. This second edition features twenty percent more content with new chapters on battery characterization, process technology, failure mechanisms and method development, plus updated information on classic batteries as well as entirely new results on advanced approaches. The authors, from such leading institutions as the US National Labs and from companies such as Panasonic and Sanyo, present a balanced view on battery research and large-scale applications. They follow a distinctly materials-oriented route through the entire field of battery research, thus allowing readers to quickly find the information on the particular materials system relevant to their research.