You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
These proceedings of 'Groups St Andrews 2017' provide a snapshot of the state-of-the-art in contemporary group theory.
This book is a lightly edited version of the unpublished manuscript Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen–Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen–Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.
For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library.
Authoritative collection of surveys and papers that will be indispensable to all research workers in the area.
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
An extended tour through a selection of the most important trends in modern geometric group theory.