You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more eas...
Does your work require multiple inferences? Are you a statistics teacher looking for a study guide to supplement the usually incomplete or outdated multiple comparisons/multiple testing material in your textbook? This workbook, the companion guide written specifically for use with Multiple Comparisons and Multiple Tests Using the SAS System, provides the supplement you need. Use this workbook and you will find problems and solutions that will enhance your understanding of the material within the main text. The workbook also provides updated information about multiple comparisons procedures, including enhancements for Release 8.1 of the SAS System. The chapters correlate with the chapters of the main text, and the format is clear and easy to use. This book and the companion text are quite useful as supplements for learning multiple comparisons procedures in standard linear models, multivariate analysis, categorical analysis, and regression and nonparametric statistics. Book jacket.
Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.
Understanding Regression Analysis unifies diverse regression applications including the classical model, ANOVA models, generalized models including Poisson, Negative binomial, logistic, and survival, neural networks, and decision trees under a common umbrella -- namely, the conditional distribution model. It explains why the conditional distribution model is the correct model, and it also explains (proves) why the assumptions of the classical regression model are wrong. Unlike other regression books, this one from the outset takes a realistic approach that all models are just approximations. Hence, the emphasis is to model Nature’s processes realistically, rather than to assume (incorrectl...
Adopting a unifying theme based on maximum statistics, Multiple Comparisons Using R describes the common underlying theory of multiple comparison procedures through numerous examples. It also presents a detailed description of available software implementations in R. The R packages and source code for the analyses are available at http://CRAN.R-project.org After giving examples of multiplicity problems, the book covers general concepts and basic multiple comparisons procedures, including the Bonferroni method and Simes’ test. It then shows how to perform parametric multiple comparisons in standard linear models and general parametric models. It also introduces the multcomp package in R, wh...
New and extensively updated for SAS 9 and later, this work provides cutting-edge methods, specialized macros, and proven best bet procedures. The book also discusses the pitfalls and advantages of various methods, thereby helping readers to decide which is the most appropriate for their purposes. 644 pp. Pub. 7/11.
Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata presents special statistical methods for analyzing data collected by questionnaires. The book takes an applied approach to testing and measurement tasks, mirroring the growing use of statistical methods and software in education, psychology, sociology, and other fields.
Useful Statistical Approaches for Addressing Multiplicity IssuesIncludes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple c
Renowned statistician R.G. Miller set the pace for statistics students with Beyond ANOVA: Basics of Applied Statistics. Designed to show students how to work with a set of "real world data," Miller's text goes beyond any specific discipline, and considers a whole variety of techniques from ANOVA to empirical Bayes methods; the jackknife, bootstrap methods; and the James-Stein estimator. This reissue of Miller's classic book has been revised by professors at Stanford University, California. As before, one of the main strengths of Beyond ANOVA is its promotion of the use of the most straightforward data analysis methods-giving students a viable option, instead of resorting to complicated and unnecessary tests. Assuming a basic background in statistics, Beyond ANOVA is written for undergraduates and graduate statistics students. Its approach will also be valued by biologists, social scientists, engineers, and anyone who may wish to handle their own data analysis.