You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biophotonics, Tryptophan and Disease is a comprehensive resource on the key role of tryptophan in wide range of diseases as seen by using optics techniques. It explores the use of fluorescence spectroscopy, Raman, imaging techniques and time-resolved spectroscopy in normal and diseased tissues and shows the reader how light techniques (i.e. spectroscopy and imaging) can be used to detect, distinguish and evaluate diseases. Diseases covered include cancer, neurodegenerative diseases and other age-related diseases. Biophotonics, Tryptophan and Disease offers a clear presentation of techniques and integrates material from different disciplines into one resource. It is a valuable reference for students and interdisciplinary researchers working on the interface between biochemistry and molecular biology, translational medicine, and biophotonics. - Shows the key role of tryptophan in diseases - Emphasizes how optical techniques can be potent means of assessing many diseases - Points to new ways of understanding autism, aging, depression, cancer and neurodegenerative diseases
Neurophotonics and Biomedical Spectroscopy addresses the novel state-of-the-art work in non-invasive optical spectroscopic methods that detect the onset and progression of diseases and other conditions, including pre-malignancy, cancer, Alzheimer's disease, tissue and cell response to therapeutic intervention, unintended injury and laser energy deposition. The book then highlights research in neurophotonics that investigates single and multi-photon excitation optical signatures of normal/diseased nerve tissues and in the brain, providing a better understanding of the underlying biochemical and structural changes of tissues and cells that are responsible for the observed spectroscopic signatu...
Glioblastoma Resistance to Chemotherapy: Molecular Mechanisms and Innovative Reversal Strategies brings current knowledge from an international team of experts on the science and clinical management of glioblastoma chemoresistance. The book discusses topics such as molecular mechanisms of chemoresistance, experimental models to study chemoresistance, chemoresistance to drugs other than Temozolomide, and specific strategies to reverse chemoresistance. Additionally, it encompasses information on how to mitigate chemoresistance by targeted enhancement of p53 function. This book is a valuable resource for cancer researchers, oncologists, neuro-oncologists and other members of the biomedical fiel...
None
None