You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This chapter introduces a generalized pignistic transformation (GPT) developed in the DSmT framework as a tool for decision-making at the pignistic level. The GPT allows to construct quite easily a subjective probability measure from any generalized basic belief assignment provided by any corpus of evidence. We focus our presentation on the 3D case and we provide the full result obtained by the proposed GPT and its validation drawn from the probability theory.
The management and combination of uncertain, imprecise, fuzzy and even paradoxical or highly conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning.
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain assoc...
In recent years it has become apparent that an important part of the theory of artificial intelligence is concerned with reasoning on the basis of uncertain, incomplete, or inconsistent information. A variety of formalisms have been developed, including nonmonotonic logic, fuzzy sets, possibility theory, belief functions, and dynamic models of reasoning such as belief revision and Bayesian networks. Several European research projects have been formed in the area and the first European conference was held in 1991. This volume contains the papers accepted for presentation at ECSQARU-93, the European Conference on Symbolicand Quantitative Approaches to Reasoning and Uncertainty, held at the University of Granada, Spain, November 8-10, 1993.
The main problem addressed by this work is how to model and combine bodies of knowledge (or evidence) while maintaining the representation of the unkowledge and of the conflict among the bodies. This is a problem with far-reaching applications in many knowledge segments, in particular for the fields of artificial intelligence, product design, decision making, knowledge engineering and uncertain probability. It must be kept in mind that knowledge based systems depend on algorithms able to relate the inputs of a system to a correct answer coming out of the knowledge-base, and both the inputs and the knowledge-base are subject to information imperfections caused by the unknowledge and the confl...
This book constitutes the refereed proceedings of the 1999 European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, ECSQARU'99, held in London, UK, in July 1999. The 35 revised full papers presented were carefully reviewed and selected for inclusion in the book by the program committee. The volume covers theoretical as well as application-oriented aspects of various formalisms for reasoning under uncertainty. Among the issues addressed are default reasoning, nonmonotonic reasoning, fuzzy logic, Bayesian theory, probabilistic reasoning, inductive learning, rough knowledge discovery, Dempster-Shafer theory, qualitative decision making, belief functions, and evidence theory.
The representation of uncertainty is a central issue in Artificial Intelligence (AI) and is being addressed in many different ways. Each approach has its proponents, and each has had its detractors. However, there is now an in creasing move towards the belief that an eclectic approach is required to represent and reason under the many facets of uncertainty. We believe that the time is ripe for a wide ranging, yet accessible, survey of the main for malisms. In this book, we offer a broad perspective on uncertainty and approach es to managing uncertainty. Rather than provide a daunting mass of techni cal detail, we have focused on the foundations and intuitions behind the various schools. The ...
This book constitutes the refereed proceedings of the First International Joint Conference on Qualitative and Quantitative Practical Reasoning, ECSQARU-FAPR'97, held in Bad Honnef, Germany, in June 1997. The volume presents 33 revised full papers carefully selected for inclusion in the book by the program committee as well as 12 invited contributions. Among the various aspects of human practical reasoning addressed in the papers are nonmonotonic logics, default reasoning, modal logics, belief function theory, Bayesian networks, fuzzy logic, possibility theory, inference algorithms, dynamic reasoning with partial models, and user modeling approaches.
Alan Robinson This set of essays pays tribute to Bob Kowalski on his 60th birthday, an anniversary which gives his friends and colleagues an excuse to celebrate his career as an original thinker, a charismatic communicator, and a forceful intellectual leader. The logic programming community hereby and herein conveys its respect and thanks to him for his pivotal role in creating and fostering the conceptual paradigm which is its raison d’Œtre. The diversity of interests covered here reflects the variety of Bob’s concerns. Read on. It is an intellectual feast. Before you begin, permit me to send him a brief personal, but public, message: Bob, how right you were, and how wrong I was. I sho...