Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Nonlinear Potential Theory on Metric Spaces
  • Language: en
  • Pages: 422

Nonlinear Potential Theory on Metric Spaces

The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large...

Potential Theory
  • Language: en
  • Pages: 494

Potential Theory

Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting ...

Potential Theory in the Complex Plane
  • Language: en
  • Pages: 246

Potential Theory in the Complex Plane

Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions.

Potential Theory, and Its Applications to Basic Problems of Mathematical Physics
  • Language: en
  • Pages: 360
Foundations of Potential Theory
  • Language: en
  • Pages: 392

Foundations of Potential Theory

The present volume gives a systematic treatment of potential functions. It takes its origin in two courses, one elementary and one advanced, which the author has given at intervals during the last ten years, and has a two-fold purpose: first, to serve as an introduction for students whose attainments in the Calculus include some knowledge of partial derivatives and multiple and line integrals; and secondly, to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications, or to the periodical literature of the day. It is inherent in the nature of the subject that physical intuition and illustration be appealed to freely, and this has been don...

Classical Potential Theory
  • Language: en
  • Pages: 343

Classical Potential Theory

A long-awaited, updated introductory text by the world leaders in potential theory. This essential reference work covers all aspects of this major field of mathematical research, from basic theory and exercises to more advanced topological ideas. The largely self-contained presentation makes it basically accessible to graduate students.

Potential Theory
  • Language: en
  • Pages: 156

Potential Theory

Potential theory grew out of mathematical physics, in particular out of the theory of gravitation and the theory of electrostatics. Mathematical physicists such as Poisson and Green introduced some of the central ideas of the subject. A mathematician with a general knowledge of analysis may find it useful to begin his study of classical potential theory by looking at its physical origins. Sections 2, 5 and 6 of these Notes give in part heuristic arguments based on physical considerations. These heuristic arguments suggest mathematical theorems and provide the mathematician with the problem of finding the proper hypotheses and mathematical proofs. These Notes are based on a one-semester course given by the author at Brown University in 1971. On the part of the reader, they assume a knowledge of Real Function Theory to the extent of a first year graduate course. In addition some elementary facts regarding harmonic functions are aS$umed as known. For convenience we have listed these facts in the Appendix. Some notation is also explained there. Essentially all the proofs we give in the Notes are for Euclidean 3-space R3 and Newtonian potentials ~.

Applications of Potential Theory in Mechanics
  • Language: en
  • Pages: 492
Classical Potential Theory and Its Probabilistic Counterpart
  • Language: en
  • Pages: 892

Classical Potential Theory and Its Probabilistic Counterpart

From the reviews: "Here is a momumental work by Doob, one of the masters, in which Part 1 develops the potential theory associated with Laplace's equation and the heat equation, and Part 2 develops those parts (martingales and Brownian motion) of stochastic process theory which are closely related to Part 1". --G.E.H. Reuter in Short Book Reviews (1985)

Nonlinear Potential Theory of Degenerate Elliptic Equations
  • Language: en
  • Pages: 417

Nonlinear Potential Theory of Degenerate Elliptic Equations

A self-contained treatment appropriate for advanced undergraduate and graduate students, this volume offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. Starting with the theory of weighted Sobolev spaces, the text advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The book concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.