You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris, 1992, Budapest, 1996, and Barcelona, 2000, the Fourth European Congress of Mathematics took place in Stockholm, Sweden, June 27 to July 2, 2004, with 913 participants from 65 countries. Apart from seven plenary and thirty three invited lectures, there were six Science Lectures covering the most relevant aspects of mathematics in science and technology. Moreover, twelve projects of the EU Research Training Networks in Mathematics and Information Sciences, as well as Programmes from the European Science Foundation in Physical and Engineering Sciences, were presented. Ten EMS Prizes were awarded to young European mathematicians who have made a particular contribution to the progress of mathematics. Five of the prizewinners were independently chosen by the 4ECM Scientific Committee as plenary or invited speakers. The other five prizewinners gave their lectures in parallel sessions. Most of these contributions are now collected in this volume, providing a permanent record of so much that is best in mathematics today.
The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris (1992), Budapest (1996), Barcelona (2000), and Stockholm (2004), the Fifth European Congress of Mathematics (5ECM) took place in Amsterdam, The Netherlands, July 14-18, 2008, with about 1000 participants from 68 different countries. Ten plenary and thirty-three invited lectures were delivered. Three science lectures outlined applications of mathematics in other sciences: climate change, quantum information theory, and population dynamics. As in the four preceding EMS congresses, ten EMS prizes were granted to very promising young mathematic...
There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. ...
Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galo...
This book quickly introduces beginners to general group theory and then focuses on three main themes : finite group theory, including sporadic groups combinatorial and geometric group theory, including the Bass-Serre theory of groups acting on trees the theory of train tracks by Bestvina and Handel for automorphisms of free groups With its many examples, exercises, and full solutions to selected exercises, this text provides a gentle introduction that is ideal for self-study and an excellent preparation for applications. A distinguished feature of the presentation is that algebraic and geometric techniques are balanced. The beautiful theory of train tracks is illustrated by two nontrivial examples. Presupposing only a basic knowledge of algebra, the book is addressed to anyone interested in group theory: from advanced undergraduate and graduate students to specialists.
This is the fourth edition of the standard introductory text and complete reference for scientists in all disciplines, as well as engineers. This fully revised version includes important updates on articles and books as well as information on a crucial new topic: how to create transparencies and computer projections, both for classrooms and professional meetings. The text maintains its user-friendly, example-based, visual approach, gently easing readers into the secrets of Latex with The Short Course. Then it introduces basic ideas through sample articles and documents. It includes a visual guide and detailed exposition of multiline math formulas, and even provides instructions on preparing books for publishers.
The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris (1992), Budapest (1996), Barcelona (2000) and Stockholm (2004), the Fifth European Congress of Mathematics (5ECM) took place in Amsterdam, The Netherlands, July 14-18, 2008, with about 1000 participants from 68 different countries. Ten plenary and thirty-three invited lectures were delivered. Three science lectures outlined applications of mathematics in other sciences: climate change, quantum information theory and population dynamics. As in the four preceding EMS congresses, ten EMS prizes were granted to very promising young mathematicia...
This book is an exploration of a claim made by Lagrange in the autumn of 1771 as he embarked upon his lengthy ``Reflexions sur la resolution algebrique des equations'': that there had been few advances in the algebraic solution of equations since the time of Cardano in the mid sixteenth century. That opinion has been shared by many later historians. The present study attempts to redress that view and to examine the intertwined developments in the theory of equations from Cardano to Lagrange. A similar historical exploration led Lagrange himself to insights that were to transform the entire nature and scope of algebra. Progress was not confined to any one country: at different times mathemati...