You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
None
Covering a span of almost 4000 years, from the ancient Babylonians to the eighteenth century, this collection chronicles the enormous changes in mathematical thinking over this time as viewed by distinguished historians of mathematics from the past and the present. Each of the four sections of the book (Ancient Mathematics, Medieval and Renaissance Mathematics, The Seventeenth Century, The Eighteenth Century) is preceded by a Foreword, in which the articles are put into historical context, and followed by an Afterword, in which they are reviewed in the light of current historical scholarship. In more than one case, two articles on the same topic are included to show how knowledge and views about the topic changed over the years. This book will be enjoyed by anyone interested in mathematics and its history - and, in particular, by mathematics teachers at secondary, college, and university levels.
This monograph deals with the expansion properties, in the complex domain, of sets of polynomials which are defined by generating relations. It thus represents a synthesis of two branches of analysis which have been developing almost independently. On the one hand there has grown up a body of results dealing with the more or less formal prop erties of sets of polynomials which possess simple generating relations. Much of this material is summarized in the Bateman compendia (ERDELYI [1], voi. III, chap. 19) and in TRUESDELL [1]. On the other hand, a problem of fundamental interest in classical analysis is to study the representability of an analytic function f(z) as a series ,Lc,. p,. (z), wh...
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in a...
Demonstrating analytical and numerical techniques for attacking problems in the application of mathematics, this well-organized, clearly written text presents the logical relationship and fundamental notations of analysis. Buck discusses analysis not solely as a tool, but as a subject in its own right. This skill-building volume familiarizes students with the language, concepts, and standard theorems of analysis, preparing them to read the mathematical literature on their own. The text revisits certain portions of elementary calculus and gives a systematic, modern approach to the differential and integral calculus of functions and transformations in several variables, including an introduction to the theory of differential forms. The material is structured to benefit those students whose interests lean toward either research in mathematics or its applications.
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.
This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.
A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.