You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Numerical Solutions for Nanocomposite Structures provides an in-depth exploration of structural analysis using numerical methods grounded in rigorous mathematical modeling. Theoretical foundations are established by comprehensively elucidating theories governing beams, plates, and shells, leading to the derivation of governing equations based on the stress–strain relationship. The process of obtaining governing equations through the energy method, application of boundary conditions, and the utilization of numerical methods to calculate deflection, frequency, and buckling loads is meticulously explained, providing readers with valuable insights into structural analysis methodologies. Includes diverse numerical examples involving beams, plates, and pipes, providing a comprehensive understanding of underlying theories and relationships. Provides numerous practical examples demonstrating the application of numerical methods to address challenges in civil and mechanical engineering problems. Discusses the unique mechanical, thermal, and electrical properties of nanocomposites, and how they can be utilized in various industries.
This book is a result of contributions of experts from the international scientific community working in different aspects of graphene science and applications and reports on the state-of-the-art research and development findings on graphene through original and innovative research studies. Through its seven chapters, the reader will have access to works related to the theory and characterization of various planar heterostructures and nanoplatforms based on graphene and also the Compton effect in graphene, while it introduces photoactive graphene from functionalization to applications and also the modeling and control of a smart single-layer graphene sheet. Besides, it presents reviews on the modeling, synthesis, and properties of graphene and graphene technology and its applications in electronic devices.
Gathering the proceedings of the 13th CHAOS2020 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.
This volume is based on an international school on ?Scaling and Disordered Systems? organized by M R H Khajehpour, M R Kolahchi and M Sahimi. Despite the common theme, it covers fields as diverse as basic and applied percolation, and biological prey-predator and ageing simulations. The advantages of computer simulation thus become particularly clear in the reviews, which have been written by leading experts.
Wave Dispersion Characteristics of Continuous Mechanical Systems provides a mechanical engineering-based analysis of wave dispersion response in various structures created from different materials. Looking at materials including strengthened nanocomposites, functionally graded materials, metal foams, and anisotropic materials, it uses analytical solution methods to solve typical problems in the framework of a micromechanics approach. Nanocomposites are a novel type of composite materials, fabricated by dispersing nanosized reinforcements in a matrix to combine the material properties of the matrix with the improved properties of nanosized elements. This book enables readers to learn about th...
This book presents select papers from the International Conference on Energy, Material Sciences and Mechanical Engineering (EMSME) - 2020. The book covers the three core areas of energy, material sciences and mechanical engineering. The topics covered include non-conventional energy resources, energy harvesting, polymers, composites, 2D materials, systems engineering, materials engineering, micro-machining, renewable energy, industrial engineering and additive manufacturing. This book will be useful to researchers and professionals working in the areas of mechanical and industrial engineering, materials applications, and energy technology.
To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.
Published articles in ITJEMAST V13(13) 2022
This book provides a comprehensive introduction to the analysis of functionally graded materials and structures. Functionally graded materials (FGMs), in which the volume fractions of two or more constituent materials are designed to vary continuously as a function of position along certain direction(s), have been developed and studied over the past three decades. The major advantage of FGMs is that no distinct internal boundaries exist, and failures from interfacial stress concentrations developed in conventional components can be avoided. The gradual change of material properties can be tailored to different applications and working environments. As these materials’ range of application ...
The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length ...