You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources t
Plant Breeding Reviews is an ongoing series presenting state-of-the art review articles on research in plant genetics, especially the breeding of commercially important crops. Articles perform the valuable function of collecting, comparing, and contrasting the primary journal literature in order to form an overview of the topic. This detailed analysis bridges the gap between the specialized researcher and the broader community of plant scientists.
This book is concerned with the ways in which crops might be developed, or improved, for soils that are agriculturally unproductive because of excesses- high salinity and metal toxicity - and/or deficiencies of certain minerals. The aim is that those working to derive crops for growth on these problem soils should be aware of the many diverse avenues that areavailable. The methods discussed are conventional breeding, selection based on knowledge of the physiological basis of tolerance, the use of cell culture and cytogenetics, and the exploitation of native flora.
The double helix architecture of DNA was elucidated in 1953. Twenty years later, in 1973, the discovery of restriction enzymes helped to create recombinant DNA molecules in vitro. The implications of these powerful and novel methods of molecular biology, and their potential in the genetic manipulation and improvement of microbes, plants and animals, became increasingly evident, and led to the birth of modern biotechnology. The first transgenic plants in which a bacterial gene had been stably integrated were produced in 1983, and by 1993 transgenic plants had been produced in all major crop species, including the cereals and the legumes. These remarkable achievements have resulted in the prod...
Historical Perspectives is a compilation of the 1991 lectures presented for the series and provides a fresh looka t plant science via anecdotes and personal knowledge.
This open access book covers a century of research on wheat genetics and evolution, starting with the discovery in 1918 of the accurate number of chromosomes in wheat. We re-evaluate classical studies that are pillars of the current knowledge considering recent genomic data in the wheat group comprising 31 species from the genera Amblyopyrum, Aegilops, Triticum, and other more distant relatives. For these species, we describe morphology, ecogeographical distribution, phylogeny as well as cytogenetic and genomic features. For crops, we also address evolution under human selection, namely pre-domestication cultivation and domestication. We re-examine the genetic and archeological evidence of where, when, and how domestication occurred. We discuss unique aspects of genome evolution and maintenance under polyploidization, in natural and synthetic allopolyploids of the wheat group. Finally, we propose some thoughts on the future prospects of wheat improvement. As such, it can be of great interest to wheat researchers and breeders as well as to plant scientists and students interested in plant genetics, evolution, domestication, and polyploidy.
Plant-pathogen interactions is a rapidly developing area among the plant sciences. Molecular genetics has provided the tools to analyse and manipulate mechanisms of pathogenicity and resistance responses and has facilitated their study from the population to the molecular level. The book brings together the views of experts in the field and provides an overview of the genetic basis of interactions between fungi, bacteria, viruses and their host plants, the triggering of plant defences and the complex array of plant responses to stop pathogen invasion, as well as possible applications for improved plant protection. The chapters are organised and written to make an advanced textbook rather than simply a collection of reviews or something resembling conference proceedings. Thus, authors have largely concentrated on a didactic approach and the book should remain useable for several years in spite of the rapid progress in research. The text is aimed at advanced students in the field of plant pathology as well as researchers requiring an integrated picture of plant resistance to pathogens.
This superb volume provides a critical assessment of genomics tools and approaches for crop breeding. Volume 1 presents the status and availability of genomic resources and platforms, and also devises strategies and approaches for effectively exploiting genomics research. Volume 2 goes into detail on a number of case studies of several important crop and plant species that summarize both the achievements and limitations of genomics research for crop improvement.