You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents a broad collection of current research by leading experts in the theory of dynamical systems.
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also r...
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
The digital era has dramatically changed the ways that researchers search, produce, publish, and disseminate their scientific work. These processes are still rapidly evolving due to improvements in information science, new achievements in computer science technologies, and initiatives such as DML and open access journals, digitization projects, sci
With a historical overview by Elvira Mascolo
This volume is based on lectures delivered at the 2016 AMS Short Course “Rigorous Numerics in Dynamics”, held January 4–5, 2016, in Seattle, Washington. Nonlinear dynamics shapes the world around us, from the harmonious movements of celestial bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell. Mathematically these phenomena are modeled by nonlinear dynamical systems, in the form of ODEs, PDEs and delay equations. The presence of nonlinearities complicates the analysis, and the difficulties are even greater for PDEs and delay equations, which are naturally defined on infinite dimensional function spaces. With the availability of powerful ...
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.
This book offers a detailed presentation of results needed to prove the Morse Homology Theorem using classical techniques from algebraic topology and homotopy theory. The text presents results that were formerly scattered in the mathematical literature, in a single reference with complete and detailed proofs. The core material includes CW-complexes, Morse theory, hyperbolic dynamical systems (the Lamba-Lemma, the Stable/Unstable Manifold Theorem), transversality theory, the Morse-Smale-Witten boundary operator, and Conley index theory.
This volume marks the twentieth anniversary of the Bialowieza series of meetings on Differential Geometric Methods in Physics; the anniversary meeting was held during July 1-7, 2001. The Bialowieza meetings, held every year during the first week of July, have now grown into an annual pilgrimage for an international group of physicists and mathematicians. The topics discussed at the meetings, while within the broad area of differential geometric methods in physics, have focused around quantization, coherent states, infinite dimensional systems, symplectic geometry, spectral theory and harmonic analysis. The present volume brings together a set of specially invited papers from leading experts ...
This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.