You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 –29 September 2017 at Noah’s On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
Our intention in this collection is to provide, largely through original writings, an ex tended account of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious, and sometimes the most whimsical aspects of mathematics. A surprising amount of the most important mathematics and a signifi cant number of the most important mathematicians have contributed to its unfolding directly or otherwise. Pi is one of the few mathematical concepts whose mention evokes a response of recog nition and interest in those not concerned professionally with the subject. It has been a part of human culture and the educated imagination for more than twenty-f...
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
The research of Jonathan Borwein has had a profound impact on optimization, functional analysis, operations research, mathematical programming, number theory, and experimental mathematics. Having authored more than a dozen books and more than 300 publications, Jonathan Borwein is one of the most productive Canadian mathematicians ever. His research spans pure, applied, and computational mathematics as well as high performance computing, and continues to have an enormous impact: MathSciNet lists more than 2500 citations by more than 1250 authors, and Borwein is one of the 250 most cited mathematicians of the period 1980-1999. He has served the Canadian Mathematics Community through his presid...
This revised and updated second edition maintains the content and spirit of the first edition and includes a new chapter, "Recent Experiences", that provides examples of experimental mathematics that have come to light since the publication of the first edition in 2003. For more examples and insights, Experimentation in Mathematics: Computational P
New mathematical insights and rigorous results are often gained through extensive experimentation using numerical examples or graphical images and analyzing them. Today computer experiments are an integral part of doing mathematics. This allows for a more systematic approach to conducting and replicating experiments. The authors address the role of
The digital era has dramatically changed the ways that researchers search, produce, publish, and disseminate their scientific work. These processes are still rapidly evolving due to improvements in information science, new achievements in computer science technologies, and initiatives such as DML and open access journals, digitization projects, sci
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
With the continued advance of computing power and accessibility, the view that "real mathematicians don't compute" no longer has any traction for a newer generation of mathematicians. The goal in this book is to present a coherent variety of accessible examples of modern mathematics where intelligent computing plays a significant role and in so doi