Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Riemann Surfaces
  • Language: en
  • Pages: 348

Riemann Surfaces

The present volume is the culmination often years' work separately and joint ly. The idea of writing this book began with a set of notes for a course given by one of the authors in 1970-1971 at the Hebrew University. The notes were refined serveral times and used as the basic content of courses given sub sequently by each of the authors at the State University of New York at Stony Brook and the Hebrew University. In this book we present the theory of Riemann surfaces and its many dif ferent facets. We begin from the most elementary aspects and try to bring the reader up to the frontier of present-day research. We treat both open and closed surfaces in this book, but our main emphasis is on the compact case. In fact, Chapters III, V, VI, and VII deal exclusively with compact surfaces. Chapters I and II are preparatory, and Chapter IV deals with uniformization. All works on Riemann surfaces go back to the fundamental results of Rie mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition to our debt to these mathematicians of a previous era, the present work has been influenced by many contemporary mathematicians.

Compact Riemann Surfaces
  • Language: en
  • Pages: 293

Compact Riemann Surfaces

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

Algebraic Curves and Riemann Surfaces
  • Language: en
  • Pages: 414

Algebraic Curves and Riemann Surfaces

In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Lectures on Riemann Surfaces
  • Language: en
  • Pages: 262

Lectures on Riemann Surfaces

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS

Moduli of Riemann Surfaces, Real Algebraic Curves, and Their Superanalogs
  • Language: en
  • Pages: 172

Moduli of Riemann Surfaces, Real Algebraic Curves, and Their Superanalogs

The space of all Riemann surfaces (the so-called moduli space) plays an important role in algebraic geometry and its applications to quantum field theory. This book focuses on the study of topological properties of this space and of similar moduli spaces, such as the space of real algebraic curves, and the space of mappings.

Reassessing Riemann's Paper
  • Language: en
  • Pages: 78

Reassessing Riemann's Paper

  • Type: Book
  • -
  • Published: 2018-05-26
  • -
  • Publisher: Springer

In this book, the author pays tribute to Bernhard Riemann (1826–1866), mathematician with revolutionary ideas, whose work on the theory of integration, the Fourier transform, the hypergeometric differential equation, etc. contributed immensely to mathematical physics. This book concentrates in particular on Riemann’s only work on prime numbers, including such then new ideas as analytical continuation in the complex plane and the product formula for entire functions. A detailed analysis of the zeros of the Riemann zeta function is presented. The impact of Riemann’s ideas on regularizing infinite values in field theory is also emphasized.

Riemann Solvers and Numerical Methods for Fluid Dynamics
  • Language: en
  • Pages: 635

Riemann Solvers and Numerical Methods for Fluid Dynamics

High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Topics In Real Analysis
  • Language: en
  • Pages: 466

Topics In Real Analysis

None

Information
  • Language: en
  • Pages: 448

Information

Go Beyond the Boundary of Science and Discover the Divine Source of Universal Information Consider the complexity of information within our bodies and all other life on this planet, deliberately programmed into us by a powerful, all-knowing God. Engineer and author Dr. Werner Gitt has created a compelling argument in the evolution vs. creation debate with a groundbreaking technical exploration of the Theory of Universal Information. He refutes the worldview in which matter or energy is the sole entity and cause for everything. Lays out the scientific logic for an alternate worldview in which a purposeful Creator God is the best and only rational alternative. Understand the true definition and source of information found within life Discover what can be learned just from the magnificent coding system found in the DNA/RNA system containing the richest source of information known to mankind as well as an incredibly complex, perfectly integrated molecular infrastructure to implement this information

Collected Papers V
  • Language: en
  • Pages: 456

Collected Papers V

Serge Lang (1927-2005) was one of the top mathematicians of our time. He was born in Paris in 1927, and moved with his family to California, where he graduated from Beverly Hills High School in 1943. He subsequently graduated from California Institute of Technology in 1946, and received a doctorate from Princeton University in 1951 before holding faculty positions at the University of Chicago and Columbia University (1955-1971). At the time of his death he was professor emeritus of Mathematics at Yale University. An excellent writer, Lang has made innumerable and invaluable contributions in diverse fields of mathematics. He was perhaps best known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He was also a member of the Bourbaki group. He was honored with the Cole Prize by the American Mathematical Society as well as with the Prix Carrière by the French Academy of Sciences. These five volumes collect the majority of his research papers, which range over a variety of topics.