You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Enzymes and whole cells are able to catalyze the most complex chemical processes under the most benign experimental and environmental conditions. In this way, enzymes and cells could be excellent catalysts for a much more sustainable chemical industry. However, enzymes and cells also have some limitations for nonbiological applications: fine chemistry, food chemistry, analysis, therapeutics, and so on. Enzymes and cells may be unstable, difficult to handle under nonconventional conditions, poorly selective toward synthetic substrates, and so forth. From this point of view, the transformation—from the laboratory to industry—of chemical processes catalyzed by enzymes and cells may be one o...
Bionanocatalysis: From Design to Applications discusses recent advances in nano-biocatalysis, fundamental design concepts and their applications in a variety of industry sectors. Strategies for immobilizing enzymes onto nanocarriers, made from polymers, silicas, carbons, and metals, by physical adsorption, covalent binding, cross-linking, or specific ligand spacers are also discussed as are the advantages, problems and solutions derived from the use of non-porous nanomaterials for enzyme immobilization. This is an important reference source for materials scientists and chemical engineers who would like to learn more about how nanobiocatalysts are designed and used. Biocatalysis has emerged a...
Leading experts in enzyme manipulation describe in detail their cutting-edge techniques for the screening, evolution, production, immobilization, and application of enzymes. These readily reproducible methods can be used to improve enzyme function by directed evolution, to covalently immobilize enzymes, to microencapsulate enzymes and cells, and to manufacture enzymes for human health, nutrition, and environmental protection. Overview chapters on microorganisms as a source of metabolic and enzymatic diversity, and on the fast-moving field of enzyme biosensors are presented. Microbial Enzymes and Biotransformations offers laboratory and industrial scientists a wealth of proven enzymatic protocols that show clearly how to go from laboratory results to successful industrial applications.
This reference book compiles the latest techniques and applications of microbiome engineering. Microbial communities interact dynamically with their hosts, creating a considerable impact on the host and their ecosystem. This book introduces readers to microbiomes and microbiome engineering. It covers topics like omics tools in microbial research, strategies to engineer human microbiomes, the application of synthetic biology to build smart microbes, and the future of microbiome engineering. It includes the application of microbiome engineering in improving human health, livestock, and agricultural productivity. The book is intended for researchers and students in the fields of microbiology and biotechnology.
This book is a printed edition of the Special Issue "Immobilized Biocatalysts" that was published in Catalysts
Six years after the symposium on Stability and Stabilization of Enzymes, a second symposium, Stability and Stabilization of Biocatalysts, on which this book is based, was organized. At the symposium, 210 participants representing all continents came together to learn from 150 oral and poster communications.The volume brings up-to-date the work already going on, and identifies possible breakthroughs in the research. This timely book therefore presents cutting edge developments in topics such as non-covalent processes in solution, protein engineering and thermophile enzymes, immobilized enzymes, non-conventional media, and whole cells.An excellent addition to the available literature, it will make a useful contribution to this key area of applied biocatalysis.
The use of biocatalysts, including enzymes and metabolically engineered cells, has attracted a great deal of attention in the chemical and bio-industry, because biocatalytic reactions can be conducted under environmentally-benign conditions and in more sustainable ways. The catalytic efficiency and chemo-, regio-, and stereo-selectivity of enzymes can be enhanced and modulated using protein engineering. Metabolic engineering seeks to enhance cellular biosynthetic productivity of target metabolites via controlling and redesigning metabolic pathways using multi-omics analysis, genome-scale modeling, metabolic flux control, and reconstruction of novel pathways. The aim of this book is to cover the recent advances in biocatalysis and metabolic engineering for biomanufacturing of biofuels, chemicals, biomaterials, and pharmaceuticals. Reviews and original research articles on the development of new strategies to improve the catalytic efficiency of enzymes, biosynthetic capability of cell factories, and their applications in production of various bioproducts and chemicals are included.
153 posters. While plant biotechnology for enzyme production and designer biomass merged as "hot topics" throughout the Symposium, the preface for each session is included in the introductions. Special topic discussions were led on "Brazilian Bioethanol Progress" by Gisella Zanin, State University of Maringa, Brazil, and on "Nontradi tional Bioprocessing" by Gene Petersen, National Renewable Energy Labo ratory, Golden, CO. A tour of the Colorado Bioprocessing Center, a "state of the art" con tract research facility at Colorado State University highlighted the process development and scale-up activities ongoing with several industrial clients. The 1999 Charles D. Scott Award for Distinguished Contributions in the field of Biotechnology for Fuels and Chemicals was presented to Dr. Charles E. Wyman, Dartmouth College professor, Thayer School of Engineering, Hanover, New Hampshire. This award is named in honor of Dr. Charles D. Scott, the founder of this Symposium and its chair for the first ten years.
Emerging Methods for Oil Extraction from Food Processing Waste is a comprehensive and cutting-edge exploration of sustainable oil extraction practices, catering to professionals and researchers in food science. The book, spanning 13 insightful chapters, intricately reviews the extraction of oil from food processing by-products, including pomace and surplus raw materials. It specifically focuses on emerging non-thermal technologies, offering valuable insights into improving oil extraction rates. The discussions encompass factors influencing extraction rates and suggest processing conditions based on various extraction methods and raw materials. In addition to providing a nuanced understanding...