You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book shows how modern Applied Mathematics influences everyday life. It features contributors from universities, research institutions and industry, who combine research and review papers to present a survey of current research. More than 20 contributions are divided into scales: nano, micro, macro, space and real life. In addition, coverage includes engaging and informative case studies as well as complex graphics and illustrations, many of them in color.
New edition of a well-known classic in the field; Previous edition sold over 6000 copies worldwide; Fully-worked examples; Many carefully selected problems
This book shows how modern Applied Mathematics influences everyday life. It features contributors from universities, research institutions and industry, who combine research and review papers to present a survey of current research. More than 20 contributions are divided into scales: nano, micro, macro, space and real life. In addition, coverage includes engaging and informative case studies as well as complex graphics and illustrations, many of them in color.
This is the second volume of the procedings of the second European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners. Together with volume II it contains a collection of contributions by the invited lecturers. Finally, volume II also presents reports on some of the Round Table discussions. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: Vol. I: N. Alon, L. Ambrosio, K. Astala, R. Benedetti, Ch. Bessenrodt, F. Bethuel, P. Bjørstad, E. Bolthausen, J. Bricmont, A. Kupiainen, D. Burago, L. Caporaso, U. Dierkes, I. Dynnikov, L.H. Eliasson, W.T. Gowers, H. Hedenmalm, A. Huber, J. Kaczorowski, J. Kollár, D.O. Kramkov, A.N. Shiryaev, C. Lescop, R. März. Vol. II: J. Matousek, D. McDuff, A.S. Merkurjev, V. Milman, St. Müller, T. Nowicki, E. Olivieri, E. Scoppola, V.P. Platonov, J. Pöschel, L. Polterovich , L. Pyber, N. Simányi, J.P. Solovej, A. Stipsicz, G. Tardos, J.-P. Tignol, A.P. Veselov, E. Zuazua.
In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality...
The author found himself in places and times to closely observe significant events and noteworthy personalities in 20th century science. Variously, he interacted with such notables as Richard Feynman, S. Chandrasekhar, Edward Teller, Ya. B. Zel'dovich, John Wheeler, James Watson, Julian Schwinger, Fred Hoyle, Martin Rees, Stephen Hawking, Freeman Dyson, Ed Witten, and many others. His Ph.D. advisor, Kip Thorne, and his Ph.D. student, Adam Riess, each won Nobel Prizes-for discoveries that he helped them start. Later, he worked with (or for) not just scientists, but also technology capitalists and billionaires, admirals and generals, and political leaders including two U.S. presidents. His memoir is rich in stories about these people and events.
This book provides a brief introduction to rational continuum mechanics in a form suitable for students of engineering, mathematics and science. The presentation is tightly focused on the simplest case of the classical mechanics of nonpolar materials, leaving aside the effects of internal structure, temperature and electromagnetism, and excluding other mathematical models, such as statistical mechanics, relativistic mechanics and quantum mechanics. Within the limitations of the simplest mechanical theory, the author had provided a text that is largely self-contained. Though the book is primarily an introduction to continuum mechanics, the lure and attraction inherent in the subject may also recommend the book as a vehicle by which the student can obtain a broader appreciation of certain important methods and results from classical and modern analysis.
On the Convexification of Optimal Control Problems of Flight Dynamics.- Restricted Optimal Transportation Flows.- Relaxation Gaps in Optimal Control Processes with State Constraints.- Optimal Shape Design for Elliptic Hemivariational Inequalities in Nonlinear Elasticity.- A Discretization for Control Problems with optimality test.- Smooth and Nonsmooth Optimal Lipschitz Control - a Model Problem.- Suboptimality Theorems in Optimal Control.- A Second Order Sufficient Condition for Optimality in Nonlinear Control - the Conjugate Point Approach.- Extremal Problems for Elliptic Systems.- Existence Results for Some Nonconvex Optimization Problems Governed by Nonlinear Processes.- Multiobjective O...
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.htmlNumerical Analysis 2000'. An introductory survey paper deals with the history of the first courses on numerical analysis in several countries and with the landmarks in the development of important algorithms and concepts in the field.