You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Singularities in Fluids, Plasmas and Optics, which contains the proceedings of a NATO Workshop held in Heraklion, Greece, in July 1992, provides a survey of the state of the art in the analysis and computation of singularities in physical problems drawn from fluid mechanics, plasma physics and nonlinear optics. The singularities include curvature singularities on fluid interfaces, the onset of turbulence in 3-D inviscid flows, focusing singularities for laser beams, and magnetic reconnection. The highlights of the book include the nonlinear Schrödinger equation for describing laser beam focusing, the method of complex variables for the analysis and computation of singularities on fluid interfaces, and studies of singularities for the 3-D Euler equations. The book is suitable for graduate students and researchers in these areas.
This volume focuses on modeling processes for which transport is one of the most complicated components, requiring different transport models in each region. The authors apply questions to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.
This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.
Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.
The volume is from the proceedings of the international conference held in celebration of Stanley Osher's sixtieth birthday. It presents recent developments and exciting new directions in scientific computing and partial differential equations for time dependent problems and its interplay with other fields, such as image processing, computer vision and graphics. Over the past decade, there have been very rapid developments in the field. This volume emphasizes the strong interaction of advanced mathematics with real-world applications and algorithms. The book is suitable for graduate students and research mathematicians interested in scientific computing and partial differential equations.
Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is nec...
Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.