You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research. This book points to important directions combining mechanical sciences with the new developments in biology. It delivers articles on mechanics of tissues at the molecular, cellular, tissue and organ levels.
Multiscale Simulations and Mechanics of Biological Materials A compilation of recent developments in multiscale simulation and computational biomaterials written by leading specialists in the field Presenting the latest developments in multiscale mechanics and multiscale simulations, and offering a unique viewpoint on multiscale modelling of biological materials, this book outlines the latest developments in computational biological materials from atomistic and molecular scale simulation on DNA, proteins, and nano-particles, to meoscale soft matter modelling of cells, and to macroscale soft tissue and blood vessel, and bone simulations. Traditionally, computational biomaterials researchers c...
This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.
Durable left ventricular assist device (LVAD) technology is advancing at a rapid pace with increasing reliability of mechanical circulatory support for progressively longer periods. With more patients living longer on their LVAD as destination therapy or until eventual heart transplantation, concomitant valvular disease will have a greater impact on outcomes and patient quality of life. While some valvular lesions exist prior to LVAD implantation, others develop de novo from continuous flow mechanical support physiology. The presence of valvular disease in the setting of LVAD support is known to reduce effective cardiac output, increase left ventricular and atrial pressure, and increase right ventricular afterload. These hemodynamic changes can in turn contribute to right heart failure and negatively impact patient outcomes.
This volume contains the proceedings of the 2000 International Congress of Theoretical and Applied Mechanics. The book captures a snapshot view of the state of the art in the field of mechanics and will be invaluable to engineers and scientists from a variety of disciplines.
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time inte...
This book combines medicinal and engineering knowledge to present engineering modelling applications (mainly computational, but also experimental) in the context of facilitating a patient-centred approach to treating congenital heart disease (CHD). After introducing the basic concepts of engineering tools, it discusses modelling and the applications of engineering techniques (e.g. computational fluid dynamics, fluid-structure interaction, structural simulations, virtual surgery, advanced image analysis, 3D printing) in specific congenital heart diseases. It also offers a number of clinical case studies describing the applications in real-life clinical practice. The final section focuses on t...