You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Proceedings of the Third International Conference on B Physics and CP Violation, held in Taipei, Taiwan, December 3-7, 1999. The main focus of the conference was to discuss the state of the art and future prospects of the field, at a high technical level. The fifth conference is to be held in May 2002 in Philadelphia. The Fourth took place in Central Japan in February 2001.zation.
These proceedings contain over 100 talks on all aspects of Physics Beyond the Standard Model of the strong and electroweak interactions — ranging from Supersymmetry, Grand Unification, Technicolor, Exotic Particles, and CP Violation to Baryogenesis, Dark Matter, Strings and Black Holes — by leading authorities and the most active researchers in High Energy Physics. The goal of the conference is to provide a completely current summary of the most exciting and aesthetically appealing theoretical ideas, especially with regard to their predictions for yet undiscovered new particles, interactions and consequent phenomena. Particular emphasis is placed on current experimental limits and constraints on new physics, and on expectations and predictions regarding our ability to probe and discriminate between the many possibilities through experiments at present and future colliders in the decade(s) to come.
None
CP violation was first observed in 1964, but only in 1999 did we gain much greater experimental insight. Direct CP violation finally appeared in the form of ε′/ε in the K system. Indirect CP violation in B → J/Ψ Ks decay, the raison d'être for construction of e+e- B factories, was first sniffed out at the proton-antiproton collider. The asymmetric B factories — BABAR at SLAC and BELLE at KEK — were completed, while the symmetric B factory at Cornell was upgraded to CLEO-III. It seems that everyone is positioning himself for the great competition on “B Physics and CP Violation”, racing to unravel the Kobayashi-Maskawa matrix, especially the size and origin of CP phases. The ch...
This international conference focussed on several exciting frontier areas of particle physics at energy scales not realizable in terrestrial accelerators and their significance in the fields of astrophysics and cosmology. The topics discussed included physics beyond the standard model, violations of discrete symmetries, neutrino physics, neutrino astronomy, experimental detection of dark matter, gravitation and feebler new forces, cosmic rays, etc. Some of the highlights are the latest results from the Kamiokande neutrino detector and status reports on experimental facilities under commission to detect solar and atmospheric neutrinos, WIMP's and dark matter candidates.
Cosmology and astroparticle physics have seen an avalanche of discoveries in the past decade (IceCube - high energy neutrinos, LIGO - gravitational waves, Fermi- gamma-ray telescope, Xenon-1T - dark matter detection, PLANCK- cosmic microwave radiation, EHT picture of black hole, SDSS -galaxy surveys), all of which require a multidisciplinary background for analyzing the phenomena. The arena for testing particle physics models is in the multimessenger astronomical observations and at the same time cosmology now requires a particle physics basis for explaining many phenomena. This book discusses the theoretical tools of particle physics and general relativity which are essential for understanding and correlating diverse astronomical observations.
This volume contains many excellent articles presenting the most recent progress in high energy physics and the current interesting problems concerning flavor physics. The reader will see how flavor physics has become a central area of particle physics, with the Standard Model (SM) being subjected to increasingly precise experiments, and why the remaining puzzles in the SM, such as the mechanisms of symmetry breaking and CP violation, as well as fermion mass and mixing generation, all are mysteries hidden in the physics of flavor. The book also shows that flavor physics is likely to be a window for probing new physics beyond the SM for many years to come.
This volume contains many excellent articles presenting the most recent progress in high energy physics and the current interesting problems concerning flavor physics. The reader will see how flavor physics has become a central area of particle physics, with the Standard Model (SM) being subjected to increasingly precise experiments, and why the remaining puzzles in the SM, such as the mechanisms of symmetry breaking and CP violation, as well as fermion mass and mixing generation, all are mysteries hidden in the physics of flavor. The book also shows that flavor physics is likely to be a window for probing new physics beyond the SM for many years to come.
In 1947, the first of what have come to be known as "strange particles" were detected. As the number and variety of these particles proliferated, physicists began to try to make sense of them. Some seemed to have masses about 900 times that of the electron, and existed in both charged and neutral varieties. These particles are now called kaons (or K mesons), and they have become the subject of some of the most exciting research in particle physics. Kaon Physics at the Turn of the Millennium presents cutting-edge papers by leading theorists and experimentalists that synthesize the current state of the field and suggest promising new directions for the future study of kaons. Topics covered include the history of kaon physics, direct CP violation in kaon decays, time reversal violation, CPT studies, theoretical aspects of kaon physics, rare kaon decays, hyperon physics, charm: CP violation and mixing, the physics of B mesons, and future opportunities for kaon physics in the twenty-first century.
This book, written by leading experts of the field, gives an excellent up-to-date overview of modern neutrino physics and is useful for scientists and graduate students alike. The book starts with a history of neutrinos and then develops from the fundamentals to the direct determination of masses and lifetimes. The role of neutrinos in fundamental astrophysical problems is discussed in detail.