You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
IAU Symposium 268 presents an overview of the most recent observational and theoretical research on the formation and evolution of light elements in the Universe: H, He, Li, Be, B, and their isotopes. Astrophysicists from a variety of subfields discuss recent developments that will improve our understanding of the light elements and provide important clues to stellar and galactic evolution, Big Bang nucleosynthesis, and cosmology. Striking observational progress has been achieved recently through the advent of next generation ground- and space-based telescopes, such as the cosmic microwave background experiments that allow the accurate determination of the baryon density of the Universe. New theoretical breakthroughs in describing stellar interiors and the chemical evolution of complex systems and the remaining challenges in this field are also addressed. This critical review is a useful resource for all those interested in the chemical evolution of the Universe.
The symposium “Star Clusters in the Era of Large Surveys” was held in Lisbon on Sep 9-10 during the JENAM 2010. It served as a platform for discussing what and how recent, on-going and planned large-area ground-based and space-based surveys can contribute to producing a major leap in this research field, which has a strong European history. Scientific topics addressed included: cluster searches, clustered vs. isolated star formation, large-scale star formation, enrichment of the field population, structure, populations and evolution of the Milky Way, cluster dynamics (internal and within the Milky Way), variability of stars in clusters (from time-resolved surveys), analysis techniques for large samples and archiving. This proceedings book provides a snapshot of the ongoing discussion on the role of large surveys in star cluster research, and serves as a reference volume for the state-of-the art in the field.
The present decade is opening new frontiers in high-energy astrophysics. After the X-ray satellites in the 1980's, including Einstein, Tenma, EXOSAT and Ginga, several satellites are, or will soon be, simultaneously in orbit offering spectacular advances in X-ray imaging at low energies (ROSATj Yohkoh) as well as at high energies (GRANAT), in spectroscopy with increased bandwidth (ASCAj SAX), and in timing (XTE). While these satellites allow us to study atomic radiation from hot plasmas or energetic electrons, other satellites study nuclear radiation at gamma-ray energies (CGRO) associated with radioactivity or spallation reactions. These experiments show that the whole universe is emitting ...
This proceedings covers topics from chemical abundances in the different components of the Milky Way and in local group galaxies, via observational and theoretical papers on mixing in stars to big bang nucleosynthesis and galaxy formation and evolution. Like all volumes in the series ESO Astrophysics Symposia, this one gives a comprehensive overview of the forefront of research in this subject. It is a valuable reference for both students and researchers.
This volume consists of papers developed from a joint ACE/ISSI symposium at the occasion of the eightieth birthday of Johannes Geiss. The symposium explored insights into the composition of solar-system and galactic matter that have been brought about by recent space missions, ground-based studies, and theoretical advances. Coverage includes linking primordial to solar composition, planetary samples, solar sources and fractionation processes, and interstellar gas and Cosmic rays.
This volume presents results from the ESO workshop Multiple Stars across the H-R Diagram, held in Garching in July 2005. It covers observations of multiple stars from ground and space, dynamical and stellar evolution in multiple systems, formation and early evolution of multiple stars, and special components of multiple stars. The book reviews the current state of observational and theoretical knowledge and discusses future studies for further progress in the field.
Reviews latest star-disk interaction region in young stars for graduate students and researchers.
High-accuracy Doppler shift measurements and high-precision spectroscopy are primary techniques in the search for exo-planets. Further extremely interesting applications include the analysis of QSO absorption lines to determine the variability of physical constants and the analysis of the isotopic ratios of absorption lines both in stars and in QSOs, and the determination of stellar oscillations through radial velocity measurements. Since the use of high-precision/resolution spectroscopy is closely connected to the ability to collect a large number of photons, the scientific domains using this technique benefit tremendously from the use of 8-meter class telescopes and will fully exploit the tremendous gain provided by future Extremely Large Telescopes (ELTs). IR high-resolution spectroscopy should soon approach the same accuracy regime achieved in the optical range. This volume comprehensively covers the astrophysical and technical aspects of high-precision spectroscopy with an outlook to future developments, and represents a useful reference work for researchers in those fields.
The original plans for a meeting to celebrate the second centenary of the As tronomical Observatory of Palermo were for a celebration with a double character. The gathering was to have both a historical character, appropriate for a bicenten nial, and a technical character, to note and chronicle the new phase of the history of the Observatory, which has prospered in parallel with the development of this fairly recent topic in astronomical research, the physics of stellar and solar coronae. After the untimely death of the Observatory's Director, Giuseppe S. Vaiana (Pippo to his many friends), a number of colleagues and friends insisted that the celebration should nevertheless be held and shoul...
A fundamental question in contemporary astrophysics is the origin of the elements. Cosmochemistry seeks to answer when, how and where the chemical elements arose. Quantitative answers to these fundamental questions require a multi-disciplinary approach involving stellar evolution, explosive nucleosynthesis and nuclear reactions in different astrophysical environments. There remain, however, many outstanding problems and cosmochemistry remains a fertile area of research. This book is among the first in recent times to put together the essentials of cosmochemistry, combining contributions from leading astrophysicists in the field. The chapters have been organized to provide a clear description of the fundamentals, an introduction to modern techniques such as computational modelling, and glimpses of outstanding issues.