You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph provides a unified and comprehensive treatment of an order-theoretic fixed point theory in partially ordered sets and its various useful interactions with topological structures. The material progresses systematically, by presenting the preliminaries before moving to more advanced topics. In the treatment of the applications a wide range of mathematical theories and methods from nonlinear analysis and integration theory are applied; an outline of which has been given an appendix chapter to make the book self-contained. Graduate students and researchers in nonlinear analysis, pure and applied mathematics, game theory and mathematical economics will find this book useful.
This book forms a valuable guide to the direction in which current numerical analysis research is heading. It will be of particular interest to graduate students and researchers concerned with the theoretical and practical issues associated with scientific computation. The main topics include ordinary and partial differential equations, fluid flow, optimization, linear algebra, and approximation theory. Two recurring themes are the need for adaptive and structure preserving numerical methods. The work presented here has a list of direct applications that include colliding black holes, molecular dynamics, blow-up problems, and card shuffling.
Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.
The numerous applications of partial differential equations to problems in physics, mechanics, and engineering keep the subject an extremely active and vital area of research. With the number of researchers working in the field, advances-large and small-come frequently. Therefore, it is essential that mathematicians working in partial differential equations and applied mathematics keep abreast of new developments. Progress in Partial Differential Equations, presents some of the latest research in this important field. Both volumes contain the lectures and papers of top international researchers contributed at the Third European Conference on Elliptic and Parabolic Problems. In addition to the general theory of elliptic and parabolic problems, the topics covered at the conference include: applications free boundary problems fluid mechanics ogeneral evolution problems calculus of variations ohomogenization omodeling numerical analysis. The research notes in these volumes offer a valuable update on the state-of-the-art in this important field of mathematics.
Clifford analysis has blossomed into an increasingly relevant and fashionable area of research in mathematical analysis-it fits conveniently at the crossroads of many fundamental areas of research, including classical harmonic analysis, operator theory, and boundary behavior. This book presents a state-of-the-art account of the most recent developments in the field of Clifford analysis with contributions by many of the field's leading researchers.
In this volume, the contributing authors deal primarily with the interaction among problems of analysis and geometry in the context of inner product spaces. They present new and old characterizations of inner product spaces among normed linear spaces and the use of such spaces in various research problems of pure and applied mathematics. The methods employed are accessible to students familiar with normed linear spaces. Some of the theorems presented are at the same time simple and challenging.
This volume constitutes the proceedings of a conference on functional analysis and its applications, which took place in India during December 1996. Topics include topological vector spaces, Banach algebras, meromorphic functions, partial differential equations, variational equations and inequalities, optimization, wavelets, elastroplasticity, numerical integration, fractal image compression, reservoir simulation, forest management, and industrial maths.
Topics in Random Polynomials presents a rigorous and comprehensive treatment of the mathematical behavior of different types of random polynomials. These polynomials-the subject of extensive recent research-have many applications in physics, economics, and statistics. The main results are presented in such a fashion that they can be understood and used by readers whose knowledge of probability incorporates little more than basic probability theory and stochastic processes.
This volume contains the texts of selected lectures delivered at the "International Conference on Navier-Stokes Equations: Theory and Numerical Methods," held during 1997 in Varenna, Lecco (Italy). In recent years, the interest in mathematical theory of phenomena in fluid mechanics has increased, particularly from the point of view of numerical analysis. The book surveys recent developments in Navier-Stokes equations and their applications, and contains contributions from leading experts in the field. It will be a valuable resource for all researchers in fluid dynamics.
In the last few decades, complex dynamical systems have received widespread public attention and emerged as one of the most active fields of mathematical research. Starting where other monographs in the subject end, Progress in Holomorphic Dynamics advances the theoretical aspects and recent results in complex dynamical systems, with particular emphasis on Siegel discs. Organized into four parts, the papers in this volume grew out of three workshops: two hosted by the Georg-August-Universität Göttingen and one at the "Mathematisches Forschungsinstitut Oberwolfach." Part I addresses linearization. The authors review Yoccoz's proof that the Brjuno condition is the optimal condition for linea...