You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.
This book focuses on finiteness conjectures and results in ordinary differential equations (ODEs) and Diophantine geometry. During the past twenty-five years, much progress has been achieved on finiteness conjectures, which are the offspring of the second part of Hilbert's 16th problem. Even in its simplest case, this is one of the very few problems on Hilbert's list which remains unsolved. These results are about existence and estimation of finite bounds for the number of limit cycles occurring in certain families of ODEs. The book describes this progress, the methods used (bifurcation theory, asymptotic expansions, methods of differential algebra, or geometry) and the specific results obta...
In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in the recently developed methods. The book, reflecting the current state of the art, can also be used for teaching special courses. (Mathematical Reviews)
This textbook contains the lecture series originally delivered at the "Advanced Course on Limit Cycles of Differential Equations" in the Centre de Rechercha Mathematica Barcelona in 2006. It covers the center-focus problem for polynomial vector fields and the application of abelian integrals to limit cycle bifurcations. Both topics are related to the authors' interests in Hilbert's sixteenth problem, but would also be of interest to those working more generally in the qualitative theory of dynamical systems.
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tool...
Computational neuroscience is a relatively new but rapidly expanding area of research which is becoming increasingly influential in shaping the way scientists think about the brain. Computational approaches have been applied at all levels of analysis, from detailed models of single-channel function, transmembrane currents, single-cell electrical activity, and neural signaling to broad theories of sensory perception, memory, and cognition. This book provides a snapshot of this exciting new field by bringing together chapters on a diversity of topics from some of its most important contributors. This includes chapters on neural coding in single cells, in small networks, and across the entire c...
Proceedings of the Nato Advanced Study Institute, held in Montreal, Canada, from 8 to 19 July 2002