You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An exploration of electric refractory materials, this book covers developments of blue light-emitting diodes using GaN-based nitrides for laser and high-temperature and -frequency devices. "Electric Refractory Materials" introduces growth and evaluation standards of films and bulk crystals, with consideration of band structure, surface electronic structure, and lattice vibrations. It also covers heat capacity and thermal conductivity, irradiation properties, and selective surfaces. Focusing on diamond material, the book examines its synthesis and characterization as well as its electrical, optical, and conductive properties. The book also discusses the use of silicon carbide, boron compounds, and other material used in electronic and light-emitting devices.
Five years have passed since the breakthrough in the critical temperature for superconductors. During this period, many superconducting materials have been discovered and developed, and our knowledge of the physical and other properties of oxide superconductors has deepened through extensive and intensive research. This knowledge has advanced superconductivity science and technology from the initial questioning stage to a more developed but still uncertain second stage where research activity in superconductivity now overlaps with fields of application. Generally speaking, science resonates with technology. Science not only complements but also competes with or stimulates technology. New sci...
Since the discovery of high temperature superconductors, many new materials have been invented. In the last year, several new materials were also discovered, but their critical temperatures are still below lOOK. Precise physical and chemical work has made tremendous progress in the theoretical and experimental study of physical properties and carrier state characterizations. The de Haas van Alphen effect measurement showed the existence of a Fermi surface in YBCO. Flux dynamics is a well-known new problem in which flux creep and irreversibility line features are especially important for a fundamental understanding of the critical current and flux pinning. Flux pinning centers which are inten...
This book covers all research fields in high Tc Superconductivity. Breakthrougs in the single crystal growth of a monolithic device leads to a new technology.
Since the production of the first commercially available blue LED in the late 1980s, silicon carbide technology has grown into a billion-dollar industry world-wide in the area of solid-state lighting and power electronics. With this in mind we organized this book to bring to the attention of those well versed in SiC technology some new developments in the field with a particular emphasis on particularly promising technologies such as SiC-based solar cells and optoelectronics. We have balanced this with the more traditional subjects such as power electronics and some new developments in the improvement of the MOS system for SiC MOSFETS. Given the importance of advanced microsystems and sensors based on SiC, we also included a review on 3C-SiC for both microsystem and electronic applications.
Recently, some SiC power devices such as Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effect-transistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. However, to stably supply them and reduce their cost, further improvements for material characterizations and those for device processing are still necessary. This book abundantly describes recent technologies on manufacturing, processing, characterization, modeling, and so on for SiC devices. In particular, for explanation of technologies, I was always careful to argue physics underlying the technologies as much as possible. If this book could be a little helpful to progress of SiC devices, it will be my unexpected happiness.
More than seven years have passed since the dramatic breakthrough in the critical temperature for superconductors. During this period, a host of new materials have been discovered, and efforts have been stepped up in a variety of domains including device and systems applications, commercialization, and basic research on the properties of superconductive materials. Recent progress in areas such as bulk single crystal production, long-scale wire and tape produc tion, flywheel and bearing applications, and electronic device applications for thin films indicate that science and technology have been working hand in hand in this field, as has been the case in the research and development of semi c...
None
None