You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Peroxisomes are a class of ubiquitous and dynamic single membrane-bounded cell organelles, devoid of DNA, with an essentially oxidative type of metabolism. In recent years it has become increasingly clear that peroxisomes are involved in a range of important cellular functions in almost all eukaryotic cells. In higher eukaryotes, including humans, peroxisomes catalyze ether phospholipids biosynthesis, fatty acid alpha-oxidation, glyoxylate detoxification, etc, and in humans peroxisomes are associated with several important genetic diseases. In plants, peroxisomes carry out the fatty acid beta-oxidation, photorespiration, metabolism of ROS, RNS and RSS, photomorphogenesis, biosynthesis of phytohormones, senescence, and defence against pathogens and herbivores. In recent years it has been postulated a possible contribution of peroxisomes to cellular signaling. In this volume an updated view of the capacity and function of peroxisomes from human, animal, fungal and plant origin as cell generators of different signal molecules involved in distinct processes of high physiological importance is presented.
Providing basic information on reactive oxygen species (ROS), this volume describes new developments in the action of ROS, the role of antioxidants, and the mechanisms developed to scavenge free radical associated cellular damage. It illustrates the chemistry of ROS, ROS signaling, antioxidative defense systems, transgene approaches in scavenging R
Following the death of Franco, Spain underwent a transition to democracy in the mid-1970s. Although a rapid process of modernization occurred, the Spanish welfare state was seen, until fairly recently, as relatively underdeveloped. However, given the progressive Europeanization and expansion of Spanish social policy, questions arise as to whether the Spanish welfare system should still be considered as peripheral to West European welfare states. This volume is divided into three sections. The first section deals with broad trends in the evolution of the Spanish welfare state. To begin with, the consolidation path of social protection policies is explored. Attention is also paid to the proces...
Oxygen (O ) appeared in significant amounts in the Earth’s atmosphere over 2. 2 2 billion years ago, largely due to the evolution of photosynthesis by cyanobacteria (Halliwell 2006). The O molecule is a free radical, as it has two impaired electrons 2 that have the same spin quantum number. This spin restriction makes O prefer to 2 accept its electrons one at a time, leading to the generation of the so-called reactive oxygen species (ROS). The chemical nature of these species dictates that they can create damage in cells. This has contributed to the creation of the “oxidative stress” concept; in this view, ROS are unavoidable toxic products of O metabolism and 2 aerobic organisms have ...
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
This book fills in a gap in the NO literature. Recent progress in the field of NO-biology shows that NO is generated within distinct cell compartments, including specific plasma membrane regions, mitochondria, chloroplasts, peroxisomes, the Golgi-complex and intracellular membrane systems. NO synthesis plays specific roles in these compartments and, in turn, cell organelles also control intracellular NO levels. This monograph focuses on the roles played by the subcellular NO-signaling microdomains in the prokaryote-, fungus-, plant- and animal cells and shows how NO behaves as an intracellular signal in distinct cellular environments. This monograph also provides a summary of our knowledge on how NO synthesis came through evolution to be associated with organelles and subcellular compartments. Promotes the novel ideas that some functions of NO and its associations with subcellular units have been conserved during the evolution of the cell. A special chapter is dedicated to the biomedical relevance of subcellular NO synthesis, and this chapter also discusses the evidence that altered compartmentalization of NO-producing enzymes causes disease.
Plant diseases, extreme weather caused by climate change, drought and an increase in metals in soil are amongst the major limiting factors of crop production worldwide. They devastate not only food supply but also the economy of a nation. Keeping in view of the global food scarcity, there is, an urgent need to develop crop plants with increased stress tolerance so as to meet the global food demands and to preserve the quality of our planet. In order to do this, it is necessary to understand how plants react and adapt to stress from the genomic and proteomic perspective. Plants adapt to stress conditions by activation of cascades of molecular mechanisms, which result in alterations in gene ex...