Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Geometry, Algebra, Number Theory, and Their Information Technology Applications
  • Language: en
  • Pages: 523

Geometry, Algebra, Number Theory, and Their Information Technology Applications

  • Type: Book
  • -
  • Published: 2018-09-18
  • -
  • Publisher: Springer

This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.

Excursions in Multiplicative Number Theory
  • Language: en
  • Pages: 342

Excursions in Multiplicative Number Theory

This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors. Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided “walks” invite readers ...

Siegel Modular Forms
  • Language: en
  • Pages: 142

Siegel Modular Forms

  • Type: Book
  • -
  • Published: 2019-05-07
  • -
  • Publisher: Springer

This monograph introduces two approaches to studying Siegel modular forms: the classical approach as holomorphic functions on the Siegel upper half space, and the approach via representation theory on the symplectic group. By illustrating the interconnections shared by the two, this book fills an important gap in the existing literature on modular forms. It begins by establishing the basics of the classical theory of Siegel modular forms, and then details more advanced topics. After this, much of the basic local representation theory is presented. Exercises are featured heavily throughout the volume, the solutions of which are helpfully provided in an appendix. Other topics considered include Hecke theory, Fourier coefficients, cuspidal automorphic representations, Bessel models, and integral representation. Graduate students and young researchers will find this volume particularly useful. It will also appeal to researchers in the area as a reference volume. Some knowledge of GL(2) theory is recommended, but there are a number of appendices included if the reader is not already familiar.

A Second Course in Analysis
  • Language: en
  • Pages: 346

A Second Course in Analysis

This book discusses major topics in measure theory, Fourier transforms, complex analysis and algebraic topology. It presents material from a mature mathematical perspective. The text is suitable for a two-semester graduate course in analysis and will help students prepare for a research career in mathematics. After a short survey of undergraduate analysis and measure theory, the book highlights the essential theorems that have now become ubiquitous in mathematics. It studies Fourier transforms, derives the inversion theorem and gives diverse applications ranging from probability theory to mathematical physics. It reviews topics in complex analysis and gives a synthetic, rigorous development ...

Problems in the Theory of Modular Forms
  • Language: en
  • Pages: 293

Problems in the Theory of Modular Forms

  • Type: Book
  • -
  • Published: 2016-11-25
  • -
  • Publisher: Springer

This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field.

Aspects of Combinatorics and Combinatorial Number Theory
  • Language: en
  • Pages: 184

Aspects of Combinatorics and Combinatorial Number Theory

  • Type: Book
  • -
  • Published: 2002
  • -
  • Publisher: Unknown

None

Integral Points on Algebraic Varieties
  • Language: en
  • Pages: 82

Integral Points on Algebraic Varieties

  • Type: Book
  • -
  • Published: 2016-11-23
  • -
  • Publisher: Springer

This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.

Research Schools on Number Theory in India
  • Language: en
  • Pages: 187

Research Schools on Number Theory in India

This book is an attempt to describe the gradual development of the major schools of research on number theory in South India, Punjab, Mumbai, Bengal, and Bihar—including the establishment of Tata Institute of Fundamental Research (TIFR), Mumbai, a landmark event in the history of research of number theory in India. Research on number theory in India during modern times started with the advent of the iconic genius Srinivasa Ramanujan, inspiring mathematicians around the world. This book discusses the national and international impact of the research made by Indian number theorists. It also includes a carefully compiled, comprehensive bibliography of major 20th century Indian number theorist...

Number Theory Related to Modular Curves
  • Language: en
  • Pages: 234

Number Theory Related to Modular Curves

This volume contains the proceedings of the Barcelona-Boston-Tokyo Number Theory Seminar, which was held in memory of Fumiyuki Momose, a distinguished number theorist from Chuo University in Tokyo. Momose, who was a student of Yasutaka Ihara, made important contributions to the theory of Galois representations attached to modular forms, rational points on elliptic and modular curves, modularity of some families of Abelian varieties, and applications of arithmetic geometry to cryptography. Papers contained in this volume cover these general themes in addition to discussing Momose's contributions as well as recent work and new results.