You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Tutorial on the braid groups / Dale Rolfsen -- Simplicial objects and homotopy groups / Jie Wu -- Introduction to configuration spaces and their applications / Frederick R. Cohen -- Configuration spaces, braids, and robotics / Robert Ghrist -- Braids and magnetic fields / Mitchell A. Berger -- Braid group cryptography / David Garber
This important book consists of surveys of high-frequency financial data analysis and econometric forecasting, written by pioneers in these areas including Nobel laureate Lawrence Klein. Some of the chapters were presented as tutorials to an audience in the Econometric Forecasting and High-Frequency Data Analysis Workshop at the Institute for Mathematical Science, National University of Singapore in May 2006. They will be of interest to researchers working in macroeconometrics as well as financial econometrics. Moreover, readers will find these chapters useful as a guide to the literature as well as suggestions for future research. Sample Chapter(s). Foreword (32 KB). Chapter 1: Forecast Uncertainty, Its Representation and Evaluation* (97 KB). Contents: Forecasting Uncertainty, Its Representation and Evaluation (K F Wallis); The University of Pennsylvania Models for High-Frequency Macroeconomic Modeling (L R Klein & S Ozmucur); Forecasting Seasonal Time Series (P H Franses); Car and Affine Processes (C Gourieroux); Multivariate Time Series Analysis and Forecasting (M Deistler). Readership: Professionals and researchers in econometric forecasting and financial data analysis.
Literaturangaben
This volume carries the same title as that of an international conference held at the National University of Singapore, 9OCo11 January 2006 on the occasion of Roger E. Howe''s 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe''s mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications. Sample Chapter(s). Foreword (21 KB). Chapter 1: The Theta Correspondence Over R (342 KB). Contents: The Theta ...
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-d...
This volume presents the written versions of the tutorial lectures given at the Workshop on Computational Prospects of Infinity, held from 18 June to 15 August 2005 at the Institute for Mathematical Sciences, National University of Singapore. It consists of articles by four of the leading experts in recursion theory (computability theory) and set theory. The survey paper of Rod Downey provides a comprehensive introduction to algorithmic randomness, one of the most active areas of current research in recursion theory. Theodore A Slaman's article is the first printed account of the ground-breaking work of Slaman-Woodin and Slaman-Shore on the definability of the Turing jump. John Steel present...
This volume presents the written versions of the tutorial lectures given at the Workshop on Computational Prospects of Infinity, held from 18 June to 15 August 2005 at the Institute for Mathematical Sciences, National University of Singapore. It consists of articles by four of the leading experts in recursion theory (computability theory) and set theory. The survey paper of Rod Downey provides a comprehensive introduction to algorithmic randomness, one of the most active areas of current research in recursion theory. Theodore A Slaman's article is the first printed account of the ground-breaking work of Slaman-Woodin and Slaman-Shore on the definability of the Turing jump. John Steel present...
Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists.In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, the subject has seen applications in such diverse areas as large dimensional data analysis and wireless communications.This volume contains chapters written by the leading participants in the field which will serve as a valuable introduction into this very exciting area of research.
This volume is a collection of written versions of the talks given at the Workshop on Computational Prospects of Infinity, held at the Institute for Mathematical Sciences from 18 June to 15 August 2005. It consists of contributions from many of the leading experts in recursion theory (computability theory) and set theory. Topics covered include the structure theory of various notions of degrees of unsolvability, algorithmic randomness, reverse mathematics, forcing, large cardinals and inner model theory, and many others.
This volume is a collection of written versions of the talks given at the Workshop on Computational Prospects of Infinity, held at the Institute for Mathematical Sciences from 18 June to 15 August 2005. It consists of contributions from many of the leading experts in recursion theory (computability theory) and set theory. Topics covered include the structure theory of various notions of degrees of unsolvability, algorithmic randomness, reverse mathematics, forcing, large cardinals and inner model theory, and many others.