You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.
This memoir chronicles the journey of an academic, tracing a path from primary school in Zambia to a career in higher education as a mathematician and educational leader. Set against the backdrop of the 20th century, the book explores how early influences and historical events shape an individual's life and professional trajectory. The author shares childhood experiences across three parts of Africa, providing an original perspective as a witness to the post-colonial period. Through personal reflections, the memoir delves into the emergence of ideas and collaborations in mathematics and how these shape career choices. It also offers candid observations on the major changes in British higher education since the 1980s. Intended for a general audience, this book provides a compelling read for anyone interested in the experience of becoming a mathematician, and higher education in general.
Using the methodology of geophilosophy, this book expands the understanding of Ukraine as a limitrophe state, as a frontier between two world cultures, the East and the West. It explains the relationship between the totally corrupt Ukrainian political system and the geographic location of the country. Drawing from open source information, the book constructs psychological portraits of five presidents of Ukraine and various members of their inner-circle in order to show their role in the formation and consolidation of the corrupt mentality of Ukrainian authority. As shown here, such mentalities of Ukrainian rulers, and their Soviet nomenklatura past, have, to a large extent, determined the course of history for the entire country. The book will appeal to a wide range of readers interested in the issues of geopolitics, geophilosophy, and national identity.
Frontiers in Entropy Across the Disciplines presents a panorama of entropy emphasizing mathematical theory, physical and scientific significance, computational methods, and applications in mathematics, physics, statistics, engineering, biomedical signals, and signal processing.In the last century classical concepts of entropy were introduced in the areas of thermodynamics, information theory, probability theory, statistics, dynamical systems, and ergodic theory. During the past 50 years, dozens of new concepts of entropy have been introduced and studied in many disciplines. This volume captures significant developments in this arena. It features expository, review, and research papers by dis...
None
None
One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).