You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A mathematically rigorous but accessible treatment of digital signal processing that intertwines basic theoretical techniques with hands-on laboratory instruction is provided by this book. The book covers various aspects of the digital signal processing (DSP) "problem". It begins with the analysis of discrete-time signals and explains sampling and the use of the discrete and fast Fourier transforms. The second part of the book — covering digital to analog and analog to digital conversion — provides a practical interlude in the mathematical content before Part III lays out a careful development of the Z-transform and the design and analysis of digital filters.
The 3rd edition strikes a nice balance between mathematical rigor and engineering oriented applications, helping students to understand the mathematical and engineering aspects of control theory.The book makes effective use of the tools provided by MATLAB® (and includes material about using the tools provided by the Python® programming language) in the design and analysis of control systems without allowing the computer-based tools to substitute for knowledge of control theory. The examples in the text are carefully designed to develop the student's intuition — in both mathematics and engineering.With over 90 solved homework problems and about 200 figures, this invaluable title will benefit junior and senior level university students in engineering.
Understanding the nature of random signals and noise is critically important for detecting signals and for reducing and minimizing the effects of noise in applications such as communications and control systems. Outlining a variety of techniques and explaining when and how to use them, Random Signals and Noise: A Mathematical Introduction focuses on applications and practical problem solving rather than probability theory. A Firm Foundation Before launching into the particulars of random signals and noise, the author outlines the elements of probability that are used throughout the book and includes an appendix on the relevant aspects of linear algebra. He offers a careful treatment of Lagra...
A GUIDE TO THE FUNDAMENTAL THEORY AND PRACTICE OF OPTICAL COMMUNICATION Fiber Optic and Atmospheric Optical Communication offers a much needed guide to characterizing and overcoming the drawbacks associated with optical communication links that suffer from various types of fading when optical signals with information traverse these wireless (atmospheric) or wired (fiber optic) channels. The authors—noted experts on the topic—present material that aids in predicting the capacity, data rate, spectral efficiency, and bit-error-rate associated with a channel that experiences fading. They review modulation techniques and methods of coding and decoding that are useful when implementing communi...
This book presents recent advances in DSP to simplify, or increase the computational speed of, common signal processing operations. The topics describe clever DSP tricks of the trade not covered in conventional DSP textbooks. This material is practical, real-world, DSP tips and tricks as opposed to the traditional highly-specialized, math-intensive, research subjects directed at industry researchers and university professors. This book goes well beyond the standard DSP fundamentals textbook and presents new, but tried-and-true, clever implementations of digital filter design, spectrum analysis, signal generation, high-speed function approximation, and various other DSP functions.
This book constitutes the refereed proceedings of the 5th International Castle Meeting on Coding Theory and Applications, ICMCTA 2017, held in Vihula, Estonia, in August 2017. The 24 full papers presented were carefully reviewed and selected for inclusion in this volume. The papers cover relevant research areas in modern coding theory, including codes and combinatorial structures, algebraic geometric codes, group codes, convolutional codes, network coding, other applications to communications, and applications of coding theory in cryptography.
This book is a biography of one of the most famous and influential living mathematicians, Peter Lax. He is virtually unique as a preeminent leader in both pure and applied mathematics, fields which are often seen as competing and incompatible. Although he has been an academic for all of his adult life, his biography is not without drama and tragedy. Lax and his family barely escaped to the U.S. from Budapest before the Holocaust descended. He was one of the youngest scientists to work on the Manhattan Project. He played a leading role in coping with the infamous "kidnapping" of the NYU mathematics department's computer, in 1970. The list of topics in which Lax made fundamental and long-lasti...
A high-impact factor, prestigious, annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.
Striking a nice balance between mathematical rigor and engineering-oriented applications, this second edition covers the bedrock parts of classical control theory — the Routh-Hurwitz theorem and applications, Nyquist diagrams, Bode plots, root locus plots, and the design of controllers (phase-lag, phase-lead, lag-lead, and PID). It also covers three more advanced topics — non-linear control, modern control, and discrete-time control.This invaluable book makes effective use of MATLAB® as a tool in design and analysis. Containing 75 solved problems and 200 figures, this edition will be useful for junior and senior level university students in engineering who have a good knowledge of complex variables and linear algebra.