You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Milo Bell is not an ordinary teenager. While the rest of the students at Bright Futures #127 spend a majority of their time in the virtual world of their SeeSees, Milo spends every waking moment with his eccentric grandfather playing with the vintage computers which fill his house. That is, every computer except for the mysterious machine with the name "LISA" scrawled on its side. An artifact from his days as an Artificial Intelligence researcher, Milo is afraid that his grandfather might be hiding something or be in some kind of trouble. Milo's worst fear is realized when his grandfather suddenly disappears and he finds the unusual computer in his own bedroom. Milo begins to learn its deadly secret when it's snatched from his hands, leading him on the most dangerous quest of his life. Peril turns to disaster as the world begins to crumble around him. With few friends and powerful enemies, can Milo unlock the secrets of the machine before time runs out?
Northern Ireland is frequently characterised in terms of a two traditions paradigm, representing the conflict as being between two discrete cultures. Demonstrating the reductionist nature of this argument, this book highlights the complexity of reality.
The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new tec...
In preparing this translation for publication certain minor modifications and additions have been introduced into the original Russian text, in order to increase its readibility and usefulness. Thus, instead of the first person, the third person has been used throughout; wherever possible footnotes have been included with the main text. The chapters and their subsections of the Russian edition have been renamed parts and chapters respectively and the last have been numbered consecutively. An authors and subject index has been added. In particular, the former has been combined with the list of references of the original text, in order to enable the reader to find quickly all information on anyone reference in which he may be especially interested. This has been considered most important with a view to the difficulties experienced outside Russia in obtaining references, published in that country. Russian names have been printed in Russian letters in the authors index, in order to overcome any possible confusion arising from transliteration.
Singular perturbations, one of the central topics in asymptotic analysis, also play a special role in describing physical phenomena such as the propagation of waves in media in the presence of small energy dissipations or dispersions, the appearance of boundary or interior layers in fluid and gas dynamics, as well as in elasticity theory, semi-classical asymptotic approximations in quantum mechanics etc. Elliptic and coercive singular perturbations are of special interest for the asymptotic solution of problems which are characterized by boundary layer phenomena, e.g. the theory of thin buckling plates, elastic rods and beams. This first volume deals with linear singular perturbations (on smooth manifolds without boundary) considered as equicontinuous linear mappings between corresponding families of Sobolev-Slobodetski's type spaces of vectorial order.
Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book e
This monograph is divided into five parts and opens with elements of the theory of singular integral equation solutions in the class of absolutely integrable and non-integrable functions. The second part deals with elements of potential theory for the Helmholtz equation, especially with the reduction of Dirichlet and Neumann problems for Laplace and Helmholtz equations to singular integral equations. Part three contains methods of calculation for different one-dimensional and two-dimensional singular integrals. In this part, quadrature formulas of discrete vortex pair type in the plane case and closed vortex frame type in the spatial case for singular integrals are described for the first time. These quadrature formulas are applied to numerical solutions of singular integral equations of the 1st and 2nd kind with constant and variable coefficients, in part four of the book. Finally, discrete mathematical models of some problems in aerodynamics, electrodynamics and elasticity theory are given.
This substantially enlarged second edition aims to lead a further stage in the computational revolution in commutative algebra. This is the first handbook/tutorial to extensively deal with SINGULAR. Among the book’s most distinctive features is a new, completely unified treatment of the global and local theories. Another feature of the book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic.
This book, by one of the most innovative and challenging contemporary thinkers, rethinks community and the very idea of the social. Nancy's fundamental argument is that being is always "being with," that "I" is not prior to "we," that existence is essentially co-existence.
This monograph is devoted to the analysis and solution of singular differential games and singular $H_{\inf}$ control problems in both finite- and infinite-horizon settings. Expanding on the authors’ previous work in this area, this novel text is the first to study the aforementioned singular problems using the regularization approach. After a brief introduction, solvability conditions are presented for the regular differential games and $H_{\inf}$ control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two ...