You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Cell surface small molecules and macromolecules, such as members of cholesterol family (including steroid hormones), the glycolipid family (sphingolipids), the glycoprotein family (both N-linked and O-linked), and a vast array of other receptors have been shown to be involved in normal and abnormal cellular processes. The 11th International Symposium on Cell Surface Macromolecules, held in Mohali, India, in February 2017 provided a comprehensive update on the major advances in this area. Presenting selected contributions from this meeting, this book comprises 24 chapters, which provide in-depth analyses of data on the role of cell surface macromolecules in cellular function and their alterations associated with pathological conditions. It includes comprehensive research papers and critical overviews of the functional role of cell surface molecules, discussing topics such as biochemical, biophysical, and cell biological approaches to study cell membrane molecules, and metabolism of glycoconjugates.
In vitro utilization of liposomes is now recognized as a powerful tool in many bioscience investigations and their associated clinical studies, e.g., liposomes in drug targeting; liposomes in gene transport across plasma and nuclear membranes; liposomes in enzyme therapy in patients with genetic disorders. However, before these areas can be effectively explored, many basic areas in liposome research require elucidation, including: (a) attachment of liposomes to cell surfaces; (b) permeation of liposomes through the plasma membranes; and (c) stability of liposomes in cell or nuclear matrices. None of these areas have been exhaustively explored and liposome researchers have ample opportunities...
Sphingolipids are found in all eukaryotic and in some prokaryotic organisms and provide structure for cell membranes, lipoproteins, and other biological materials as well as participate in the regulation of cell growth, differentiation, and diverse cell functions, including cell-cell communication, cell-substratum interactions, and intracellular signal transduction. This volume presents methods used in studying enzymes of sphingolipid biosynthesis and turnover, including inhibitors of some of these enzymes, genetic approaches, and organic and enzymatic syntheses of sphingolipids and analogs. Its companion Volume 312 will contain information on analyzing sphingolipids, sphingolipid transport ...
The closing years of the 19th century and the start of the 20th century witnessed the emergence of microbiology and immunology as discrete sci- tific disciplines, and in the work of Roux and Yersin, perhaps the first benefits of their synergy—immunotherapy against bacterial infection. As we advance into the new millennium, microbiology and immunology again offer a c- ceptual leap forward as antibody phage display gains increasing acceptance as the definitive technology for monoclonal production and unleashes new - portunities in immunotherapy, drug discovery, and functional genomics. In assembling Antibody Phage Display: Methods and Protocols, we have aimed to produce a resource of real va...
Leading biostatisticians and biomedical researchers describe many of the key techniques used to solve commonly occurring data analytic problems in molecular biology, and demonstrate how these methods can be used in the development of new markers for exposure to a risk factor or for disease outcomes. Major areas of application include microarray analysis, proteomic studies, image quantitation, genetic susceptibility and association, evaluation of new biomarkers, and power analysis and sample size.
The past decade has witnessed a spectacular explosion in both the devel- ment and use of transgenic technologies. Not only have these been used to aid our fundamental understanding of biologic mechanisms, but they have also faci- tated the development of a range of disease models that are now truly beginning to impact upon our approach to human disease. Some of the most exciting model systems relate to neurodegenerative disease and cancer, where the availability of appropriate models is at last allowing radically new therapies to be developed and tested. This latter point is of particular significance given the current concerns of the wider public over both the use of animal models and the merits of using genetically modified organisms. Arguably, advances of the greatest significance have been made using mammalian systems—driven by the advent of embryonic stem-cell–based strategies and, more recently, by cloning through nuclear transfer. For this reason, this new edition of Transgenesis Techniques focuses much more heavily on manipulation of the mammalian genome, both in the general discussions and in the provision of specific protocols.
The fundamental problem that dividing cells have to ov- come is that of end-replication. Chromosomes shorten by many bases during DNA replication and so this presents a major hurdle that a cell has to overcome both to enable it to proliferate and for the larger organism to survive and reproduce. The enzyme telomerase provides a mechanism to ensure chromosome stability in both normal and neoplastic cells. The demonstration of telomerase expression in a majority of tumors and the realization of the potential role of telomerase in aging has opened up the potential for telomerase to be used as a target for therapeutic intervention. There is therefore great interest in the expression and activity of telomerase in a wide range of biological disciplines. Telomeres and Telomerase: Methods and Protocols has been produced as a tool for the many researchers in different areas of cell biology who are interested in following research in the area of telomerase and telomere maintenance, either in the area of fundamental mec- nisms or perhaps in the area of more applied drug discovery work.
In High Throughput Screening, leading scientists and researchers expert in molecular discovery explain the diverse technologies and key techniques used in HTS and demonstrate how they can be applied generically. Writing to create precisely the introductory guidebook they wish had been available when they started in HTS, these expert seasoned authors illuminate the HTS process with richly detailed tutorials on the biological techniques involved, the management of compound libraries, and the automation and engineering approaches needed. Extensive discussions provide readers with all those key elements of pharmacology, molecular biology, enzymology, and biochemistry that will ensure the identification of suitable targets and screens, and detail the technology necessary to mine millions of data points for meaningful knowledge.
Calcium plays an important role in a wide variety of biological processes. This divalent metal ion can bind to a large number of proteins; by doing so it modifies their biological activity or their stability. Because of its distinct che- cal properties calcium is uniquely suited to act as an on–off switch or as a light dimmer of biological activities. The two books entitled Calcium-Binding Protein Protocols (Volumes I and II) focus on modern experimental analyses and methodologies for the study of calcium-binding proteins. Both extracel- lar and intracellular calcium-binding proteins are discussed in detail. H- ever, proteins involved in calcium handling (e. g. , calcium pumps and calcium ...
Christoph Kannicht and a panel of highly experienced researchers describe readily reproducible methods for detecting and analyzing the posttranslational modifications of protein, particularly with regard to protein function, proteome research, and the characterization of pharmaceutical proteins.