You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Environmental pollution increases day by day due to increases in population, industrialization and urbanization, posing a threat to human health. The risk of adverse effects on health and on the environment caused by pollution has driven international efforts to combat pollutants. Bioremediation is the most effective innovative technology that uses live naturally-occurring microorganisms to degrade environmental pollutants and prevent contamination. Emerging Technologies in Environmental Bioremediation introduces emerging bioremediation technologies for the treatment and management of industrial wastes and other environmental pollutants for the sake of environmental sustainability. Emerging ...
Development in Wastewater Treatment Research and Processes: Innovative Trends in Removal of Refractory Pollutants from Pharmaceutical Waste Water sorts out emerging and burning issues faced by the pharmaceutical industry, along with common effluent treatment plans. The book provides a comprehensive view of recent advents of various novel, advanced and hybrid treatment technologies in pharmaceutical wastewater treatment to treat emerging pollutants released by the pharmaceutical industry in their untreated wastewater. In addition, the book gives insights into recent developments with a physico-chemical and microbiological focus on the treatment of emerging contaminants (pollutants) present in...
Removal of Emerging Contaminants from Wastewater through Bio-nanotechnology showcases profiles of the nonregulated contaminants termed as "emerging contaminants, which comprise industrial and household persistent toxic chemicals, pharmaceuticals and personal care products (PPCPs), pesticides, surfactants and surfactant residues, plasticizers and industrial additives, manufactured nanomaterials and nanoparticles, microplastics, etc. that are used extensively in everyday life. The occurrence of "emerging contaminants in wastewater, and their behavior during wastewater treatment and production of drinking water are key issues in the reuse and recycling of water resources. This book focuses on t...
This volume focuses on technological advances relevant to establishing biofuels as a viable alternative to fossil fuels by overcoming current limitations. The progressive depletion of fossil fuels due to their large-scale utilization and their environmental consequences, notably global warming, increase the need for sustainable and cleaner energy options. Renewable biofuels – like biohydrogen, biomethane, biogas, ethanol and butenol – represent attractive energy sources to meet the growing global demand, thanks to sustainable and cost-efficient production approaches based on cellulosic biomass. Currently, the commercialization of these technologies is hindered by technical and economic limitations, such as biomass complexity and pre-treatment, enzyme hydrolysis, production efficiency as well as storage and cost. As such, this book presents economically viable and sustainable approaches to improve existing biofuel technologies and appeals to anyone with an interest in biofuels as renewable energy options and their practical implementation.
Presents the many recent innovations and advancements in the field of biotechnological processes This book tackles the challenges and potential of biotechnological processes for the production of new industrial ingredients, bioactive compounds, biopolymers, energy sources, and compounds with commercial/industrial and economic interest by performing an interface between the developments achieved in the recent worldwide research and its many challenges to the upscale process until the adoption of commercial as well as industrial scale. Bioprocessing for Biomolecules Production examines the current status of the use and limitation of biotechnology in different industrial sectors, prospects for ...
White biotechnology, or industrial biotechnology as it is also known, refers to the use of living cells and/or their enzymes to create industrial products that are more easily degradable, require less energy, create less waste during production and sometimes perform better than products created using traditional chemical processes. Over the last decade considerable progress has been made in white biotechnology research, and further major scientific and technological breakthroughs are expected in the future. Fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity and pH), and may be associated...
Today synthetic dyes are used extensively in the textile dyeing, paper printing, color photography, pharmaceuticals, food and drink, cosmetic and leather industries. As of now, over 100,000 different dyes are available, with an annual production of over 700,000 metric tons. These industries discharge an enormous amount of colored effluents into natural water bodies, with or without treatment. The textile industry alone discharges 280,000 tons of dyes every year, making it the largest contributor to colored effluent discharge. Although a variety of treatment technologies are available, including adsorption, chemical oxidation, precipitation, coagulation, filtration electrolysis and photodegradation, biological and microbiological methods employing activated sludge, pure cultures, microbial consortia and degradative enzymes are economically viable, effective and environmentally responsible options. As such, this book gathers review articles from international experts working on the microbial degradation of synthetic dyes, offering readers the latest information on the subject. It is intended as a quick reference guide for academics, scientists and industrialists around the world.
With an increased demand for wastewater reuse, groundwater recharge with treated wastewater has been practiced across the globe. As a result, groundwater quality deteriorates by emerging micropollutants from various anthropogenic origins, including untreated wastewater, seepage of landfill leachate, and runoff from agricultural lands. The fate of such emerging and geogenic contaminants in subsurface systems, especially in the groundwater, depends on several factors. Physicochemical properties of contaminants such as octanol-water partition coefficient, dissociation constant, water solubility, susceptibility to biodegradation under anaerobic conditions, and environmental persistence under div...
The book, Bioremediation of Toxic Metal(loid)s, describes the state-of-the-art and potential of emerging technologies on bioremediation of toxic metal(loid)s. It has a compilation of the available comprehensive knowledge of the fundamentals and advancements in the field of bioremediation of toxic metal(loid)s. The mechanisms, applications, and current advancements of various bioremediation strategies used for metal(loid)s have been described in 21 chapters contributed by leading experts from different institutes, universities, and research laboratories from various countries across the globe including Argentina, Canada, Chile, Colombia, France, India, Japan, Republic of Korea, the United Kingdom, and the United States of America. This book offers a bird’s eye view on various bioremediation technologies based on a variety of biological agents viz. plants, bacteria, algae, fungi etc., used for environmental clean-up of toxic metal(loid)s.
The Future of Effluent Treatment Plants: Biological Treatment Systems is an advanced and updated version of existing biological technologies that includes their limitations, challenges, and potential application to remove chemical oxygen demand (COD), refractory chemical oxygen demand, biochemical oxygen demand (BOD), color removal and environmental pollutants through advancements in microbial bioremediation. The book introduces new trends and advances in environmental bioremediation with thorough discussions of recent developments. In addition, it illustrates that the application of these new emerging innovative technologies can lead to energy savings and resource recovery. The importance o...