You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
This book contains the contributions to the Workshop on the Physics and Applications of High Brightness Electron Beams, held in July 2002 in Sardinia, Italy. This workshop had a broad international representation from the fields of intense electron sources, free-electron lasers, advanced accelerators, and ultra-fast laser-plasma, beam-plasma and laser-beam physics. The interdisciplinary participants were brought together to discuss advances in the creation and understanding of ultra-fast, ultra-high brightness electron beams, and the unique experimental opportunities in frontier high-energy-density and radiation-source physics which are offered by these scientific tools.The proceedings have been selected for coverage in: OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings)OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)"
Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency. This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards from atomic clocks, to frequency stabilised lasers. The whole is rounded of with a discussion of topical applications in engineering, telecommunications, and metrology.
"Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitatio...
Nonlinear Optics, Fourth Edition, is a tutorial-based introduction to nonlinear optics that is suitable for graduate-level courses in electrical and electronic engineering, and for electronic and computer engineering departments, physics departments, and as a reference for industry practitioners of nonlinear optics. It will appeal to a wide audience of optics, physics and electrical and electronic engineering students, as well as practitioners in related fields, such as materials science and chemistry. Presents an introduction to the entire field of optical physics from the perspective of nonlinear optics Combines first-rate pedagogy with a treatment of the fundamental aspects of nonlinear optics Covers all the latest topics and technology in this ever-evolving industry Contains a strong emphasis on fundamentals
This open access volume brings together selected papers from the 8th International Conference on Attosecond Science and Technology. The contributions within represent the latest advances in attosecond science, covering recent progress in ultrafast electron dynamics in atoms, molecules, clusters, surfaces, solids, nanostructures and plasmas, as well as the generation of sub-femtosecond XUV and X-ray pulses, either through table-top laser setups or with X-ray free-electron lasers. In addition to highlighting key advances and outlining the state of the field, the conference and its proceedings serve to introduce junior researchers to the community, promote collaborations, and represent the global and topical diversity of the field.
It brought together mathematicians, theoretical chemists, and physicists working in the area of control and optimization of systems to address the outstanding numerical and mathematical problems."
This is the first of a series of books on Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field that spans atomic and molecular physics, molecular science, and optical science. It covers intense VUV laser-cluster interaction, resonance and chaos-assisted tunneling, and the effects of the carrier-envelope phase on high-order harmonic generation.
This graduate textbook introduces the com-putational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach. Contents How to propagate a wavefunction? Calculation of typical strong-field observables Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein-Gordon equation Time-dependent density functional theory The multiconfiguration time-dependent Hartree-Fock method Time-dependent configuration interaction singles Strong-field approximation and quantum orbits Microscopic particle-in-cell approach