You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
One service mathematics has rendered the 'Et moi, "', si j'avait su comment en revenir, je n'y serais point all".' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics . .'; 'One service logic has rendered com puter science . .'; 'One service category theory has rendered mathematics . .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.
This is the first book that deals with practical stability and its development. It presents a systematic study of the theory of practical stability in terms of two different measures and arbitrary sets and demonstrates the manifestations of general Lyapunov's method by showing how this effective technique can be adapted to investigate various apparently diverse nonlinear problems including control systems and multivalued differential equations.
Notes and Reports in Mathematics in Science and Engineering, Volume 5: Nonlinear Problems in Abstract Cones presents the investigation of nonlinear problems in abstract cones. This book uses the theory of cones coupled with the fixed point index to investigate positive fixed points of various classes of nonlinear operators. Organized into four chapters, this volume begins with an overview of the fundamental properties of cones coupled with the fixed point index. This text then employs the fixed point theory developed to discuss positive solutions of nonlinear integral equations. Other chapters consider several examples from integral and differential equations to illustrate the abstract results. This book discusses as well the fixed points of increasing and decreasing operators. The final chapter deals with the development of the theory of nonlinear differential equations in cones. This book is a valuable resource for graduate students in mathematics. Mathematicians and researchers will also find this book useful.
Many evolution processes are characterized by the fact that at certain moments of time they experience a change of state abruptly. These processes are subject to short-term perturbations whose duration is negligible in comparison with the duration of the process. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. It is known, for example, that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, pharmacokinetics and frequency modulated systems, do exhibit impulsive effects. Thus impulsive differential equations, that is, differential equations involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems.
This unique monograph investigates the theory and applications of Volterra integro-differential equations. Whilst covering the basic theory behind these equations it also studies their qualitative properties and discusses a large number of applications. This comprehensive work presents a unified framework to investigate the fundamental existence of theory, treats stability theory in terms of Lyapunov functions and functionals, develops the theory of integro-differential equations with impulse effects, and deals with linear evolution equations in abstract spaces. Various applications of integro-differential equations, such as population dynamics, nuclear reactors, viscoelasticity, wave propagation and engineering systems, are discussed, making this book indispensable for mathematicians and engineers alike.
Fuzzy differential functions are applicable to real-world problems in engineering, computer science, and social science. That relevance makes for rapid development of new ideas and theories. This volume is a timely introduction to the subject that describes the current state of the theory of fuzzy differential equations and inclusions and provides a systematic account of recent developments. The chapters are presented in a clear and logical way and include the preliminary material for fuzzy set theory; a description of calculus for fuzzy functions, an investigation of the basic theory of fuzzy differential equations, and an introduction to fuzzy differential inclusions.
Many problems in partial differential equations which arise from physical models can be considered as ordinary differential equations in appropriate infinite dimensional spaces, for which elegant theories and powerful techniques have recently been developed. This book gives a detailed account of the current state of the theory of nonlinear differential equations in a Banach space, and discusses existence theory for differential equations with continuous and discontinuous right-hand sides. Of special importance is the first systematic presentation of the very important and complex theory of multivalued discontinuous differential equations