You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Covers its topic in greater depth than the typical standard books on polynomial algebra
This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.
This book combines the classical and contemporary approaches to differential geometry. An introduction to the Riemannian geometry of manifolds is preceded by a detailed discussion of properties of curves and surfaces. The chapter on the differential geometry of plane curves considers local and global properties of curves, evolutes and involutes, and affine and projective differential geometry. Various approaches to Gaussian curvature for surfaces are discussed. The curvature tensor, conjugate points, and the Laplace-Beltrami operator are first considered in detail for two-dimensional surfaces, which facilitates studying them in the many-dimensional case. A separate chapter is devoted to the differential geometry of Lie groups.
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford...
There are a number of very good books available on linear algebra. However, new results in linear algebra appear constantly, as do new, simpler, and better proofs of old results. Many of these results and proofs obtained in the past thirty years are accessible to undergraduate mathematics majors, but are usually ignored by textbooks. In addition, more than a few interesting old results are not covered in many books. In this book, the author provides the basics of linear algebra, with an emphasis on new results and on nonstandard and interesting proofs. The book features about 230 problems with complete solutions. It can serve as a supplementary text for an undergraduate or graduate algebra course.
The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
This book is an introduction to elementary topology presented in an intuitive way, emphasizing the visual aspect. Examples of nontrivial and often unexpected topological phenomena acquaint the reader with the picturesque world of knots, links, vector fields, and two-dimensional surfaces. The book begins with definitions presented in a tangible and perceptible way, on an everyday level, and progressively makes them more precise and rigorous, eventually reaching the level of fairly sophisticated proofs. This allows meaningful problems to be tackled from the outset. Another unusual trait of this book is that it deals mainly with constructions and maps, rather than with proofs that certain maps and constructions do or do not exist. The numerous illustrations are an essential feature. The book is accessible not only to undergraduates but also to high school students and will interest any reader who has some feeling for the visual elegance of geometry and topology.
None
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.
This book is devoted to the geometry and arithmetic of elliptic curves and to elliptic functions with applications to algebra and number theory. It includes modern interpretations of some famous classical algebraic theorems such as Abel's theorem on the lemniscate and Hermite's solution of the fifth degree equation by means of theta functions. Suitable as a text, the book is self-contained and assumes as prerequisites only the standard one-year courses of algebra and analysis.