Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Number Theory Meets Wireless Communications
  • Language: en
  • Pages: 281

Number Theory Meets Wireless Communications

This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and inte...

Dynamics and Analytic Number Theory
  • Language: en
  • Pages: 341

Dynamics and Analytic Number Theory

Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.

On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates
  • Language: en
  • Pages: 102

On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates

This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.

The Role of True Finiteness in the Admissible Recursively Enumerable Degrees
  • Language: en
  • Pages: 114

The Role of True Finiteness in the Admissible Recursively Enumerable Degrees

When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of $\alpha$-finiteness. As examples we discuss bothcodings of models of arithmetic into the recursively enumerable degrees, and non-distributive lattice embeddings into these degrees. We show that if an admissible ordinal $\alpha$ is effectively close to $\omega$ (where this closeness can be measured by size or by cofinality) then such constructions maybe performed in the $\alpha$-r.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the first-order language of partially ordered sets, and so these results also show that there are natu

Recent Trends in Ergodic Theory and Dynamical Systems
  • Language: en
  • Pages: 272

Recent Trends in Ergodic Theory and Dynamical Systems

This volume contains the proceedings of the International Conference on Recent Trends in Ergodic Theory and Dynamical Systems, in honor of S. G. Dani's 65th Birthday, held December 26-29, 2012, in Vadodara, India. This volume covers many topics of ergodic theory, dynamical systems, number theory and probability measures on groups. Included are papers on Teichmüller dynamics, Diophantine approximation, iterated function systems, random walks and algebraic dynamical systems, as well as two surveys on the work of S. G. Dani.

Dynamics, Geometry, Number Theory
  • Language: en
  • Pages: 573

Dynamics, Geometry, Number Theory

"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--

Horizons of Fractal Geometry and Complex Dimensions
  • Language: en
  • Pages: 320

Horizons of Fractal Geometry and Complex Dimensions

This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).

The Mother Body Phase Transition in the Normal Matrix Model
  • Language: en
  • Pages: 156

The Mother Body Phase Transition in the Normal Matrix Model

In this present paper, the authors consider the normal matrix model with cubic plus linear potential.

Measure Theoretic Laws for lim sup Sets
  • Language: en
  • Pages: 116

Measure Theoretic Laws for lim sup Sets

Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main r...

Sums of Reciprocals of Fractional Parts and Multiplicative Diophantine Approximation
  • Language: en
  • Pages: 92