You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
My aim in writing Gene Function has been to present an up-to-date picture ofthe molecular biology of Escherichia coli. I have not attempted a chronological description, believing that a mechanistic account is more useful for such a highly developed field. I have divided the book into four parts. Part I is a general introduction to bacterial systems, their genetic material, structure, composition and growth. It has seemed desirable to include herein a brief preview of the remaining text, to introduce the nomenclature and to help place subsequent chapters in perspective. The expression of genetic material and its perturbation through mutation is considered in Part II. Part III discusses how the transfer of prokaryotic genetic material can be mediated by plasmids and bacteriophages. It describes the DNA transactions involved (replication, recombination and repair) and ends with a description of the genetic and biochemical techniques employed in the study of gene organisation. Finally, Part IV considers the control of expression of bacterial, plasmid and phage genes. Key reviews are listed at the end of each chapter.
Achievements and progress in genome mapping and the genomics of microbes supersede by far those for higher plants and animals, in part due to their enormous economic implication but also smaller genome size. In the post-genomic era, whole genome sequences of animal-associated microbes are providing clues to depicting the genetic basis of the complex host-pathogen relationships and the evolution of parasitism; and to improving methods of controlling pathogens. This volume focuses on a globally important group of intracellular prokaryotic pathogens which affect livestock animals. These include Brucella, Mycobacterium, Anaplasma and Ehrlichia, as well as the protozoan pathogens Cryptosporidium and Theileria, for which genome sequence data is available. Insights from comparative genomics of the microbes described provide clues to the adaptation involved in host-microbe interactions, as well as resources potentially useful for application in future research and product development.
The deadly nature of the Theileria parasite and the exquisite cunning, displayed when survival strategies are called for, inspire both awe and fascination, if not admiration, among field and laboratory scientists. Its negative impact on livestock production with resulting economical losses, however, undoubtedly affects the quality of human life. This book will provide detailed insight into the state-of-the art research, ongoing in different laboratories, aimed at unravelling the intricacies and molecular basis of the parasite as well as host-parasite interactions, that govern the immune responses and pathogenesis of Theileriosis. Theileria, volume three of "World Class Parasites", is written for researchers, students and scholars who enjoy reading research that has a major impact on human health, or agricultural productivity, and against which we have no satisfactory defense. It is intended to supplement more formal texts that cover taxonomy, life cycles, morphology, vector distribution, symptoms and treatment. It integrates vector, pathogen and host biology and celebrates the diversity of approach that comprises modern parasitological research.
Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.
This book provides an in-depth yet concise overview of the most common and emerging protozoa that cause diseases in both farm animals and companion animals. As outlined in the concise introduction, pathogenic protozoans represent an evolutionary highly diverse and little understood group of disease-causing microorganisms. For each of the featured parasitic unicellular eukaryotes, it discusses the morphology, lifecycle, epidemiology and host-pathogen interactions. In addition, the book highlights the latest developments in diagnostic methods, as well as prevention and treatment strategies. Thorough information on genomes and genetic manipulation strategies for some of the protozoa covered in ...
Toxoplasmosis is caused by a one-celled protozoan parasite known as Toxoplasma gondii. In the United States, it is estimated that approximately 30% of cats, the primary carriers, have been infected by T. gondii. Most humans contract toxoplasmosis by eating cyst-contaminated raw or undercooked meat, vegetables, or milk products or when they come into contact with the T. gondii eggs from cat feaces while cleaning a cat's litterbox, gardening, or playing in a sandbox. Approx 1 in 4 (more than 60 million) people in the USA are infected with the parasite, and in the UK between 0.5 and 1% of individuals become infected each year. By the age of 50, 40% of people test positive for the parasite. The ...
None
None