You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood f...
This introduction to algebraic geometry allows readers to grasp the fundamentals of the subject with only linear algebra and calculus as prerequisites. After a brief history of the subject, the book introduces projective spaces and projective varieties, and explains plane curves and resolution of their singularities. The volume further develops the geometry of algebraic curves and treats congruence zeta functions of algebraic curves over a finite field. It concludes with a complex analytical discussion of algebraic curves. The author emphasizes computation of concrete examples rather than proofs, and these examples are discussed from various viewpoints. This approach allows readers to develop a deeper understanding of the theorems.
If we had to formulate in one sentence what this book is about, it might be "How partial differential equations can help to understand heat explosion, tumor growth or evolution of biological species". These and many other applications are described by reaction-diffusion equations. The theory of reaction-diffusion equations appeared in the first half of the last century. In the present time, it is widely used in population dynamics, chemical physics, biomedical modelling. The purpose of this book is to present the mathematical theory of reaction-diffusion equations in the context of their numerous applications. We will go from the general mathematical theory to specific equations and then to their applications. Existence, stability and bifurcations of solutions will be studied for bounded domains and in the case of travelling waves. The classical theory of reaction-diffusion equations and new topics such as nonlocal equations and multi-scale models in biology will be considered.
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
This book consists of survey and research articles expanding on the theme of the OC International Conference on Reaction-Diffusion Systems and Viscosity SolutionsOCO, held at Providence University, Taiwan, during January 3OCo6, 2007. It is a carefully selected collection of articles representing the recent progress of some important areas of nonlinear partial differential equations. The book is aimed for researchers and postgraduate students who want to learn about or follow some of the current research topics in nonlinear partial differential equations. The contributors consist of international experts and some participants of the conference, including Nils Ackermann (Mexico), Chao-Nien Chen (Taiwan), Yihong Du (Australia), Alberto Farina (France), Hitoshi Ishii (Japan), N Ishimura (Japan), Shigeaki Koike (Japan), Chu-Pin Lo (Taiwan), Peter Polacik (USA), Kunimochi Sakamoto (Japan), Richard Tsai (USA), Mingxin Wang (China), Yoshio Yamada (Japan), Eiji Yanagida (Japan), and Xiao-Qiang Zhao (Canada).
The concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Features: The book starts with the basics and ends with the latest results, explaining the current status of the theory of Hecke operators on spaces of holomorphic modular forms of integer and half-integer weight congruence-subgroups of integral symplectic groups. Hecke operators are considered principally as an instrument for studying the multiplicative properties of the Fourier coefficients of modular forms. It is the authors' intent that Modular Forms and Hecke Operators help attract young researchers to this beautiful and mysterious realm of number theory.
This book aims at providing a handy explanation of the notions behind the self-similar sets called "fractals" and "chaotic dynamical systems". The authors emphasize the beautiful relationship between fractal functions (such as Weierstrass's) and chaotic dynamical systems; these nowhere-differentiable functions are generating functions of chaotic dynamical systems. These functions are shown to be in a sense unique solutions of certain boundary problems. The last chapter of the book treats harmonic functions on fractal sets.
he concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Features: The book starts with the basics and ends with the latest results, explaining the current status of the theory of Hecke operators on spaces of holomorphic modular forms of integer and half-integer weight congruence-subgroups of integral symplectic groups.Hecke operators are considered principally as an instrument for studying the multiplicative properties of the Fourier coefficients of modular forms. It is the authors' intent that Modular Forms and Hecke Operators help attract young researchers to this beautiful and mysterious realm of number theory.
This book is intended to provide engineering and/or statistics students, communications engineers, and mathematicians with the firm theoretic basis of source coding (or data compression) in information theory. Although information theory consists of two main areas, source coding and channel coding, the authors choose here to focus only on source coding. The reason is that, in a sense, it is more basic than channel coding, and also because of recent achievements in source coding and compression. An important feature of the book is that whenever possible, the authors describe universal coding methods, i.e., the methods that can be used without prior knowledge of the statistical properties of t...