Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Astrocytes in (Patho)Physiology of the Nervous System
  • Language: en
  • Pages: 701

Astrocytes in (Patho)Physiology of the Nervous System

Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as ...

Nanotechnology for Biology and Medicine
  • Language: en
  • Pages: 242

Nanotechnology for Biology and Medicine

This text book will bring together a mix of both internationally known and established senior scientists along side up and coming (but already accomplished) junior scientists that have varying expertise in fundamental and applied nanotechnology to biology and medicine.

Pathological Potential of Neuroglia
  • Language: en
  • Pages: 546

Pathological Potential of Neuroglia

  • Type: Book
  • -
  • Published: 2014-09-26
  • -
  • Publisher: Springer

Pathophysiological states, neurological and psychiatric diseases are almost universally considered from the neurocentric point of view, with neurons being the principal cellular element of pathological process. The brain homeostasis, which lies at the fulcrum of healthy brain function, the compromise of which invariably results in dysfunction/disease, however, is entirely controlled by neuroglia. It is becoming clear that neuroglial cells are involved in various aspects of initiation, progression and resolution of neuropathology. In this book we aim to integrate the body of information that has accumulated in recent years revealing the active role of glia in such pathophysiological processes. Understanding roles of glial cells in pathology will provide new targets for medical intervention and aide the development of much needed therapeutics. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.

Astrocytes in Psychiatric Disorders
  • Language: en
  • Pages: 368

Astrocytes in Psychiatric Disorders

This contributed volume discusses the multiple roles of astrocytes, which determine the progression and outcome of neuropsychiatric diseases. This emerging area of study examines the ways in which astrocytes are involved in various aspects of disease initiation, progression and resolution. This monograph aims to integrate the body of information that has accumulated in recent years revealing the active role of astrocytes in neuropsychiatric pathology and in psychiatric disorders. Understanding roles of astrocytes in pathology will provide new targets for medical intervention and aid the development of much needed therapeutics. This book will be valuable for researchers and workers in the fields of neurobiology, neurology, and psychiatry, as well as fill the need for a textbook used in advanced courses/graduate seminars in glial pathophysiology.

Nanotechnology for Biology and Medicine
  • Language: en

Nanotechnology for Biology and Medicine

  • Type: Book
  • -
  • Published: 2011-10-21
  • -
  • Publisher: Springer

This text book will bring together a mix of both internationally known and established senior scientists along side up and coming (but already accomplished) junior scientists that have varying expertise in fundamental and applied nanotechnology to biology and medicine.

Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain
  • Language: en
  • Pages: 275

Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain

  • Type: Book
  • -
  • Published: 2014-09-18
  • -
  • Publisher: Springer

ATP acts as main energy source and is pivotal for numerous signaling cascades both inside the cells (by fuelling various transport systems and donating phosphate groups) and between the cells (by chemical transmission). Similarly glutamate acts as an important molecule for both intercellular signaling though glutamatergic transmission and cell energetics by contributing to ATP production. In this collection of chapters, written by the leading experts in the field of cell metabolism and energetics, intracellular signaling and neurotransmission we covered various aspects of the interfacing between these two fundamental molecules. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.

Glia in Health and Disease
  • Language: en
  • Pages: 385

Glia in Health and Disease

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

The Role of Glia in Plasticity and Behavior
  • Language: en
  • Pages: 106

The Role of Glia in Plasticity and Behavior

Glial cells are no longer considered passive bystanders in neuronal brain circuits. Not only are they required for housekeeping and brain metabolism, they are active participants in regulating the physiological function and plasticity of brain circuits and the online control of behavior both in invertebrate and vertebrate model systems. In invertebrates, glial cells are essential for normal function of sensory organs (C. elegans) and necessary for the circadian regulation of locomotor activity (D. melanogaster). In the mamallian brain, astrocytes are implicated in the regulation of cortical brain rhythms and sleep homeostasis. Disruption of AMPA receptor function in a subset of glial cell ty...

Glial ⇔ Neuronal Signaling
  • Language: en
  • Pages: 442

Glial ⇔ Neuronal Signaling

Glial Neuronal Signaling fills a need for a monograph/textbook to be used in advanced courses or graduate seminars aimed at exploring glial-neuronal interactions. Even experts in the field will find useful the authoritative summaries of evidence on ion channels and transporters in glia, genes involved in signaling during development, metabolic cross talk and cooperation between astrocytes and neurons, to mention but a few of the timely summaries of a wide range of glial-neuronal interactions. The chapters are written by the top researchers in the field of glial-neuronal signaling, and cover the most current advances in this field. The book will also be of value to the workers in the field of cell biology in general. When we think about the brain we usually think about neurons. Although there are 100 billion neurons in mammalian brain, these cells do not constitute a majority. Quite the contrary, glial cells and other non-neuronal cells are 10-50 times more numerous than neurons. This book is meant to integrate the emerging body of information that has been accumulating, revealing the interactive nature of the brain's two major neural cell types, neurons and glia, in brain function.

Alexander Disease
  • Language: en
  • Pages: 96

Alexander Disease

This book offers a comprehensive overview of Alexander disease, a rare and devastating neurological disorder that often affects the white matter of the brain and spinal cord. Its distinctive neuropathology consists of abundant Rosenthal fibers within astrocytes (one of the four major cell types of the central nervous system). Nearly all cases are caused by variants in the gene encoding the intermediate filament protein GFAP, but how these changes in GFAP lead to the widespread manifestations of disease is poorly understood. Astrocytes, while discovered over a century ago, are themselves still much of a mystery. They exhibit considerable diversity, defy precise definition, and yet actively re...