You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Primarily aimed at researchers and postgraduates, but may be of interest to some professionals working in related fields, such as the insurance industry Suitable as supplementary reading for a standard course in applied probability Requires minimal prerequisites in mathematical analysis and probability theory
Introducing Financial Mathematics: Theory, Binomial Models, and Applications seeks to replace existing books with a rigorous stand-alone text that covers fewer examples in greater detail with more proofs. The book uses the fundamental theorem of asset pricing as an introduction to linear algebra and convex analysis. It also provides example computer programs, mainly Octave/MATLAB functions but also spreadsheets and Macsyma scripts, with which students may experiment on real data.The text's unique coverage is in its contemporary combination of discrete and continuous models to compute implied volatility and fit models to market data. The goal is to bridge the large gaps among nonmathematical finance texts, purely theoretical economics texts, and specific software-focused engineering texts.
Stochastic Modelling of Big Data in Finance provides a rigorous overview and exploration of stochastic modelling of big data in finance (BDF). The book describes various stochastic models, including multivariate models, to deal with big data in finance. This includes data in high-frequency and algorithmic trading, specifically in limit order books (LOB), and shows how those models can be applied to different datasets to describe the dynamics of LOB, and to figure out which model is the best with respect to a specific data set. The results of the book may be used to also solve acquisition, liquidation and market making problems, and other optimization problems in finance. Features Self-contai...
Quantitative Finance with Python: A Practical Guide to Investment Management, Trading and Financial Engineering bridges the gap between the theory of mathematical finance and the practical applications of these concepts for derivative pricing and portfolio management. The book provides students with a very hands-on, rigorous introduction to foundational topics in quant finance, such as options pricing, portfolio optimization and machine learning. Simultaneously, the reader benefits from a strong emphasis on the practical applications of these concepts for institutional investors. Features Useful as both a teaching resource and as a practical tool for professional investors. Ideal textbook for first year graduate students in quantitative finance programs, such as those in master’s programs in Mathematical Finance, Quant Finance or Financial Engineering. Includes a perspective on the future of quant finance techniques, and in particular covers some introductory concepts of Machine Learning. Free-to-access repository with Python codes available at www.routledge.com/ 9781032014432 and on https://github.com/lingyixu/Quant-Finance-With-Python-Code.
Since a major source of income for many countries comes from exporting commodities, price discovery and information transmission between commodity futures markets are key issues for continued economic development. Commodities: Fundamental Theory of Futures, Forwards, and Derivatives Pricing, Second Edition covers the fundamental theory of and derivatives pricing for major commodity markets, as well as the interaction between commodity prices, the real economy, and other financial markets. After a thoroughly updated and extensive theoretical and practical introduction, this new edition of the book is divided into five parts – the fifth of which is entirely new material covering cutting-edge...
Introduction to Stochastic Finance with Market Examples, Second Edition presents an introduction to pricing and hedging in discrete and continuous-time financial models, emphasizing both analytical and probabilistic methods. It demonstrates both the power and limitations of mathematical models in finance, covering the basics of stochastic calculus for finance, and details the techniques required to model the time evolution of risky assets. The book discusses a wide range of classical topics including Black–Scholes pricing, American options, derivatives, term structure modeling, and change of numéraire. It also builds up to special topics, such as exotic options, stochastic volatility, and...
Risk Measures and Insurance Solvency Benchmarks: Fixed-Probability Levels in Renewal Risk Models is written for academics and practitioners who are concerned about potential weaknesses of the Solvency II regulatory system. It is also intended for readers who are interested in pure and applied probability, have a taste for classical and asymptotic analysis, and are motivated to delve into rather intensive calculations. The formal prerequisite for this book is a good background in analysis. The desired prerequisite is some degree of probability training, but someone with knowledge of the classical real-variable theory, including asymptotic methods, will also find this book interesting. For tho...
Pricing Models of Volatility Products and Exotic Variance Derivatives summarizes most of the recent research results in pricing models of derivatives on discrete realized variance and VIX. The book begins with the presentation of volatility trading and uses of variance derivatives. It then moves on to discuss the robust replication strategy of variance swaps using portfolio of options, which is one of the major milestones in pricing theory of variance derivatives. The replication procedure provides the theoretical foundation of the construction of VIX. This book provides sound arguments for formulating the pricing models of variance derivatives and establishes formal proofs of various technical results. Illustrative numerical examples are included to show accuracy and effectiveness of analytic and approximation methods. Features Useful for practitioners and quants in the financial industry who need to make choices between various pricing models of variance derivatives Fabulous resource for researchers interested in pricing and hedging issues of variance derivatives and VIX products Can be used as a university textbook in a topic course on pricing variance derivatives
Abstract Calculus: A Categorical Approach provides an abstract approach to calculus. It is intended for graduate students pursuing PhDs in pure mathematics but junior and senior researchers in basically any field of mathematics and theoretical physics will also be interested. Any calculus text for undergraduate students majoring in engineering, mathematics or physics deals with the classical concepts of limits, continuity, differentiability, optimization, integrability, summability, and approximation. This book covers the exact same topics, but from a categorical perspective, making the classification of topological modules as the main category involved. Features Suitable for PhD candidates and researchers Requires prerequisites in set theory, general topology, and abstract algebra, but is otherwise self-contained Dr. Francisco Javier García-Pacheco is a full professor and Director of the Departmental Section of Mathematics at the College of Engineering of the University of Cádiz, Spain.
Noncommutative Polynomial Algebras of Solvable Type and Their Modules is the first book to systematically introduce the basic constructive-computational theory and methods developed for investigating solvable polynomial algebras and their modules. In doing so, this book covers: A constructive introduction to solvable polynomial algebras and Gröbner basis theory for left ideals of solvable polynomial algebras and submodules of free modules The new filtered-graded techniques combined with the determination of the existence of graded monomial orderings The elimination theory and methods (for left ideals and submodules of free modules) combining the Gröbner basis techniques with the use of Gel...