You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.
During his long and productive career, Salomon Bochner worked in a variety of different areas of mathematics. This four part set brings together his collected papers, illustrating the range and depth of his mathematical interests. The books are available either individually or as a set.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis of Frames, Wavelets, and Tilings, held April 13-14, 2013, in Boulder, Colorado. Frames were first introduced by Duffin and Schaeffer in 1952 in the context of nonharmonic Fourier series but have enjoyed widespread interest in recent years, particularly as a unifying concept. Indeed, mathematicians with backgrounds as diverse as classical and modern harmonic analysis, Banach space theory, operator algebras, and complex analysis have recently worked in frame theory. Frame theory appears in the context of wavelets, spectra and tilings, sampling theory, and more. The papers in this volume touch on a wide variety...
This book consists of several survey and research papers covering a wide range of topics in active areas of set theory and set theoretic topology. Some of the articles present, for the first time in print, knowledge that has been around for several years and known intimately to only a few experts. The surveys bring the reader up to date on the latest information in several areas that have been surveyed a decade or more ago. Topics covered in the volume include combinatorial and descriptive set theory, determinacy, iterated forcing, Ramsey theory, selection principles, set-theoretic topology, and universality, among others. Graduate students and researchers in logic, especially set theory, descriptive set theory, and set-theoretic topology, will find this book to be a very valuable reference.
This book provides an up-to-date understanding of the progress and current problems of the interplay of nonlocality in the classical theories of gravitation and quantum theory. These problems lie on the border between general relativity and quantum physics, including quantum gravity.
In 1989, Edward Witten discovered a deep relationship between quantum field theory and knot theory, and this beautiful discovery created a new field of research called Chern-Simons theory. This field has the remarkable feature of intertwining a large number of diverse branches of research in mathematics and physics, among them low-dimensional topology, differential geometry, quantum algebra, functional and stochastic analysis, quantum gravity, and string theory. The 20-year anniversary of Witten's discovery provided an opportunity to bring together researchers working in Chern-Simons theory for a meeting, and the resulting conference, which took place during the summer of 2009 at the Max Planck Institute for Mathematics in Bonn, included many of the leading experts in the field. This volume documents the activities of the conference and presents several original research articles, including another monumental paper by Witten that is sure to stimulate further activity in this and related fields. This collection will provide an excellent overview of the current research directions and recent progress in Chern-Simons gauge theory.
This book provides an up-to-date understanding of the progress and current problems of the interplay of nonlocality in the classical theories of gravitation and quantum theory. These problems lie on the border between general relativity and quantum physics, including quantum gravity.
The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.
This text covers the essential topics in the geometry of algebraic curves, such as line and vector bundles, the Riemann-Roch Theorem, divisors, coherent sheaves, and zeroth and first cohomology groups. It demonstrates how curves can act as a natural introduction to algebraic geometry.