You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Designed for the non-specialist, this classic text by a world expert is an invaluable reference tool for those interested in a basic understanding of the subject. Exercises, notes and exhaustive references follow each chapter, making it outstanding both as a text and reference for students and researchers in graph theory and its applications.The author approaches the subject with a lively writing style. The reader will delight to discover that the topics in this book are coherently unified and include some of the deepest and most beautiful developments in graph theory.
This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.
A unique introduction to graph theory, written by one of the founding fathers. Professor William Tutte, codebreaker and mathematician, details his experiences in the area and provides a fascinating insight into the processes leading to his proofs.
Early reminiscences; A tribute; A note on some of professor Tutte's mathematical work; Papers and books by W.T. Tutte; Topological and algebraic methods in graph theory; All the king's horses; Hadwiger's conjecture and six-chromatic toroidal graphs; Planar colorings: a theory.
Combinatorics 79. Part I
Graph Theory (as a recognized discipline) is a relative newcomer to Mathematics. The first formal paper is found in the work of Leonhard Euler in 1736. In recent years the subject has grown so rapidly that in today's literature, graph theory papers abound with new mathematical developments and significant applications.As with any academic field, it is good to step back occasionally and ask Where is all this activity taking us?, What are the outstanding fundamental problems?, What are the next important steps to take?. In short, Quo Vadis, Graph Theory?. The contributors to this volume have together provided a comprehensive reference source for future directions and open questions in the field.
Combinatorics and graph theory have mushroomed in recent years. Many overlapping or equivalent results have been produced. Some of these are special cases of unformulated or unrecognized general theorems. The body of knowledge has now reached a stage where approaches toward unification are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967), "Combinatorics needs fewer theorems and more theory. " In this book we are doing two things at the same time: A. We are presenting a unified treatment of much of combinatorics and graph theory. We have constructed a concise algebraically based, but otherwise self-contained theory, which at one time embraces the basic theorems that one normal...