You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a compilation of papers from the inaugural International Science Education Conference held at the National Institute of Education (Singapore). The title, Science Education at the Nexus of Theory and Practice, reflects a pressing yet ongoing concern worldwide to integrate theory and practice in science education and the reader will find something of interest to both science education practitioners and researchers. The editors have decided to engage in (written) dialogue before each of the three sections to enrich the experience. Divided into three key sections: (A) Concepts, conceptual change, and science learning; (B) science teacher development and learning; and (C) access to science, accessible science, the 19 chapters will engender food for thought, and in all likelihood, transform classroom practices. All the contributors here provide important insights into the diverse education systems, cultural backgrounds, and societal norms through which science education can be realized.
In contemporary science education research, an adequate understanding of the `nature of science' is regarded an important aspect of scientific literacy and, thus, a central goal of science education. At present, German science education standards only implicitly include nature of science aspects, yet. This dissertation project, therefore, aims to provide a first approach to include nature of science in the German science education standards. At the core of this dissertation, a theoretical model of competence is derived which defines competence regarding nature of science and distinguishes between Nature of Scientific Inquiry (NOSI) and Nature of Scientific Knowledge (NOS). Two studies were conducted to investigate the theoretical model's empirical validity. The studies included investigating the model's inner structure, a discrimination against control variables as well as a comparison of German and U.S. students.
Prompted by the ongoing debate among science educators over ‘nature of science’, and its importance in school and university curricula, this book is a clarion call for a broad re-conceptualizing of nature of science in science education. The authors draw on the ‘family resemblance’ approach popularized by Wittgenstein, defining science as a cognitive-epistemic and social-institutional system whose heterogeneous characteristics and influences should be more thoroughly reflected in science education. They seek wherever possible to clarify their developing thesis with visual tools that illustrate how their ideas can be practically applied in science education. The volume’s holistic re...
This book synthesizes current literature and research on scientific inquiry and the nature of science in K-12 instruction. Its presentation of the distinctions and overlaps of inquiry and nature of science as instructional outcomes are unique in contemporary literature. Researchers and teachers will find the text interesting as it carefully explores the subtleties and challenges of designing curriculum and instruction for integrating inquiry and nature of science.
This book presents a “philosophy of science education” as a research field as well as its value for curriculum, instruction and teacher pedagogy. It seeks to re-think science education as an educational endeavour by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several “reform waves” has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. It argues that educational theory can support teacher’s pedagogical content knowledge and that history, philosophy and sociology of s...
Brings teaching primary science to life, with dedicated chapters for chemistry, physics, biology and earth and environmental science.
This book is a guide for teachers, student teachers, teacher educators, science education researchers and curriculum developers who wish to get to grips with the vast and complex literature encompassing the history of science, philosophy of science and sociology of science (HPS). A number of books cover essentially the same ground, but what makes this book unique is that it is written from the perspective of science education. The author’s purpose is twofold. First, to identify, clarify and critique elements in the HPS literature that are of key importance in developing students’scientific and technological literacy, as defined in the opening chapter of the book. Second, to enhance teachers’ capacity to build and present curricula that afford a much higher profile to HPS than has been traditional. The significance of the book can be judged from the prominence given to nature of science understanding in much recent international debate and writing in science education and in the plethora of influential reports on science and technology education published around the world that identify HPS knowledge and understanding as central components of 21st century science education.
Issues relating to values have always had a place in the school science curriculum. Sometimes this has been only in terms of the inclusion of topics such as ‘the nature of science’ and/or ‘scientific method’ and/or particular intentions for laboratory work that relate to ‘scientific method.’sometimes it has been much broader, for example in curricula with STS emphases. Of importance to aspects of this proposal is that different countries/cultures have had different traditions in terms of the place of values in the school [science] curriculum. One obvious very broad difference of this form is the central place in [science] education thinking in many European countries of bildung, ...
This book is an historical narrative of academic appointments, significant personal and collaborative research endeavours, and important editorial and institutional engagements. For forty years Michael Matthews has been a prominent international researcher, author, editor and organiser in the field of ‘History, Philosophy and Science Teaching’. He has systematically brought his own discipline training in science, psychology, philosophy of education, and the history and philosophy of science, to bear upon theoretical, curricular and pedagogical issues in science education. The book includes accounts of philosophers who greatly influenced his own thinking and who also were personal friends – Wallis Suchting, Abner Shimony, Robert Cohen, Marx Wartofsky, Israel Scheffler, Michael Martin and Mario Bunge. It advocates the importance of clear writing and avoidance of faddism in both philosophy and in education. It concludes with a proposal for informed and enlightened science teacher education.
This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the field, it lays down a much-needed marker of progress to date and provides a platform for informed and coherent future analysis and research of the subject. The...