Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Microscopic Simulations of Complex Hydrodynamic Phenomena
  • Language: en
  • Pages: 437

Microscopic Simulations of Complex Hydrodynamic Phenomena

This volume contains the proceedings of a NATO Advanced Study Institute which was held in Alghero, Sardinia, in July 1991. The development of computers in the recent years has lead to the emergence of unconventional ideas aiming at solving old problems. Among these, the possibility of computing directly fluid flows from the trajectories of constituent particles has been much exploited in the last few years: lattice gases cellular automata and more generally Molecular Dynamics have been used to reproduce and study complex flows. Whether or not these methods may someday compete with more traditional approaches is a question which cannot be answered at the present time: it will depend on the ne...

Nonlinear Dynamics, Chaotic and Complex Systems
  • Language: en
  • Pages: 358

Nonlinear Dynamics, Chaotic and Complex Systems

The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.

Microscopic Simulations of Complex Flows
  • Language: en
  • Pages: 368

Microscopic Simulations of Complex Flows

This volume contains the proceedings of a workshop which was held in Brussels during the month of August 1989. A strong motivation for organizing this workshop was to bring together people who have been involved in the microscopic simulation of phenomena occuring on "large" space and time scales. Indeed, results obtained in the last years by different groups tend to support the idea that macroscopic behavior already appears in systems small enough so as to be modelled by a collection of interacting particles on a (super) computer. Such an approach is certainly desirable to study situations where no satisfactory phenomenological theory is known to hold, or where solutions of the equations are...

Shock Induced Transitions and Phase Structures in General Media
  • Language: en
  • Pages: 257

Shock Induced Transitions and Phase Structures in General Media

This IMA Volume in Mathematics and its Applications SHOCK INDUCED TRANSITIONS AND PHASE STRUCTURES IN GENERAL MEDIA is based on the proceedings of a workshop that was an integral part of the 1990-91 IMA program on "Phase Transitions and Free Boundaries." The workshop focused on the thermodynamics and mechanics of dynamic phase transitions that are mainly inertially driven and brought together physicists, metallurgists, mathematicians, engineers, and molecular dynamicists with interests in these problems. Financial support of the National Science Foundation made the meeting pos sible. We are grateful to J .E. Dunn, Roger Fosdick, and Marshall Slemrod for organizing the meeting and editing the...

Computer Simulations of Liquid Crystals and Polymers
  • Language: en
  • Pages: 384

Computer Simulations of Liquid Crystals and Polymers

Liquid crystals, polymers and polymer liquid crystals are soft condensed matter systems of major technological and scientific interest. An understanding of the macroscopic properties of these complex systems and of their many and interesting peculiarities at the molecular level can nowadays only be attained using computer simulations and statistical mechanical theories. Both in the Liquid Crystal and Polymer fields a considerable amount of simulation work has been done in the last few years with various classes of models at different special resolutions, ranging from atomistic to molecular and coarse-grained lattice models. Each of the two fields has developed its own set of tools and specia...

Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics
  • Language: en
  • Pages: 458

Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics

A valuable introduction for newcomers as well as an important reference and source of inspiration for established researchers, this book provides an up-to-date summary of central topics in the field of nonequilibrium statistical mechanics and dynamical systems theory.Understanding macroscopic properties of matter starting from microscopic chaos in the equations of motion of single atoms or molecules is a key problem in nonequilibrium statistical mechanics. Of particular interest both for theory and applications are transport processes such as diffusion, reaction, conduction and viscosity.Recent advances towards a deterministic theory of nonequilibrium statistical physics are summarized: Both...

Computational Physics
  • Language: en
  • Pages: 564

Computational Physics

This book describes computational methods used in theoretical physics with emphasis on condensed matter applications.

High-Pressure Shock Compression of Solids VI
  • Language: en
  • Pages: 361

High-Pressure Shock Compression of Solids VI

Both experimental and theoretical investigations make it clear that mesoscale materials, that is, materials at scales intermediate between atomic and bulk matter, do not always behave in ways predicted by conventional theories of shock compression. At these scales, shock waves interact with local material properties and microstructure to produce a hierarchy of dissipative structures such as inelastic deformation fields, randomly distributed lattice defects, and residual stresses. A macroscopically steady planar shock wave is neither plane nor steady at the mesoscale. The chapters in this book examine the assumptions underlying our understanding of shock phenomena and present new measurements, calculations, and theories that challenge these assumptions. They address such questions as: - What are the experimental data on mesoscale effects of shocks, and what are the implications? - Can one formulate new mesoscale theories of shock dynamics? - How would new mesoscale theories affect our understanding of shock-induced phase transitions or fracture? - What new computational models will be needed for investigating mesoscale shocks?

Computer Simulation in Materials Science
  • Language: en
  • Pages: 540

Computer Simulation in Materials Science

This volume collects the contributions! to the NATO Advanced Study Institute (ASI) held in Aussois (France) by March 25 - April 5, 1991. This NATO ASI was intended to present and illustrate recent advances in computer simulation techniques applied to the study of materials science problems. Introductory lectures have been devoted to classical simulations with special reference to recent technical improvements, in view of their application to complex systems (glasses, molecular systems . . . ). Several other lectures and seminars focused on the methods of elaboration of interatomic potentials and to a critical presentation of quantum simulation techniques. On the other hand, seminars and post...

Molecular Dynamics
  • Language: en
  • Pages: 440

Molecular Dynamics

Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This first book begins with a general description of underlying theories of molecular dynamics simulations and provides extensive coverage of molecular dynamics simulations in nanotechnology and energy. Coverage of this book includes: Recent advances of molecular dynamics theory Formation and evolution of nanoparticles of up to 106 atoms Diffusion and dissociation of gas and liquid molecules on silicon, metal, or metal organic frameworks Conductivity of ionic species in solid oxides Ion solvation in liquid mixtures Nuclear structures