You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Physics and Partial Differential Equations, The Complete Set bridges physics and applied mathematics in a manner that is easily accessible to readers with an undergraduate-level background in these disciplines. Each volume is also sold individually. Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as?electrodynamics;?fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics;?elastic, thermoelastic, and viscoelastic mechanics;?the kinetic theory of gases;?special relativity; and?quantum mechanics. Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including?the types and basic characteristics of the equations,?the behavior of solutions, and?some commonly used approaches to solving PDEs.
This book is mainly a collection of lecture notes for the 2021 LIASFMA International Graduate School on Applied Mathematics. It provides the readers some important results on the theory, the methods, and the application in the field of 'Control of Partial Differential Equations'. It is useful for researchers and graduate students in mathematics or control theory, and for mathematicians or engineers with an interest in control systems governed by partial differential equations.
The Emphasis Year on Nonlinear Partial Differential Equations and Related Analysis at Northwestern University produced this fine collection of original research and survey articles. Many well-known mathematicians attended the events and submitted their contributions for this volume. Eighteen papers comprise this work, representing the most significant advances and current trends in nonlinear PDEs and their applications. Topics covered include elliptic and parabolic equations, NavierStokes equations, and hyperbolic conservation laws. Important applications are presented from incompressible and compressible fluid mechanics, combustion, and electromagnetism. Also included are articles on recent advances in statistical reliability in modeling, simulation, level set methods forimage processing, shock waves, free boundaries, boundary layers, errors in numerical solutions, stability, instability, and singular limits. The volume is suitable for researchers and graduate students interested in partial differential equations.
This book is a collection of lecture notes for the LIASFMA Hangzhou Autumn School on 'Control and Inverse Problems for Partial Differential Equations' which was held during October 17-22, 2016 at Zhejiang University, Hangzhou, China. This autumn school is one of the activities organized by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA). Established jointly by eight institutions in China and France in 2014, LIASFMA aims at providing a platform for many leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in broad areas of applied mathematics.The book provides the readers with a unique and valuable opportunity to learn from and communicate with leading experts in control and inverse problems. And the readers are exposed not only to the basic theories and methods but also to the forefront of research directions in both fields.
This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model. The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students interested in partial differential equations and related analysis with applications.
This book presents recent results concerning the global existence in time, the large-time behavior, decays of solutions and the existence of global attractors for nonlinear parabolic-hyperbolic coupled systems of evolutionary partial differential equations.
After transcending worlds, Lu Xiaohua thought that he was going to carry his child to be a widow, but he realized that his sick husband was hiding the truth. "My wife, quickly save your husband!" "Cough cough. Husband, promise me that when you meet with danger in the future, you must stand in front of me, okay!" The female artiste with 18 strings had crossed over to face off against her husband. Who wouldn't be an expert at acting?
OLD TEXT 4th Edition to be replaced: This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperb...
This book presents recent results on nonlinear parabolic-hyperbolic coupled systems such as the compressible Navier-Stokes equations, and liquid crystal system. It summarizes recently published research by the authors and their collaborators, but also includes new and unpublished material. All models under consideration are built on compressible equations and liquid crystal systems. This type of partial differential equations arises not only in many fields of mathematics, but also in other branches of science such as physics, fluid dynamics and material science.
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.