You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Explores Worldwide Trends Involving the Production and Use of Biofuels With the depletion of oil resources as well as the negative environmental impact of fossil fuels, there is much interest in alternative energy sources. Focusing on some of the most important alternate energy sources for the foreseeable future, the Handbook of Plant-
Waste to Profit: Environmental Concerns and Sustainable Development gives information about selecting the most suitable technology for waste treatment and energy recovery under different conditions. It contains techno-economic analysis, life cycle assessment, optimization of tools and technologies, including overview of various technologies involved in the treatment of wastes and factors influencing the involved processes. Finally, it explores the environmental, socioeconomic, and sustainability impact of different waste-to-energy systems. Features: Reviews energy sources and technologies from waste, their environmental interactions, and the relevant global energy policies Provides overview ...
Diminishing confined fossil resources has spurred the scientific community to strive for alternative, sustainable resources, such as terrestrial biomass, which can potentially substitute fossil-based derivatives. Lignocellulosic biomass is deemed an indispensable carbon source for meeting industrial and social demands regarding energy/fuels and chemicals. Over the past decade, significant advances have been shown in developing a broad spectrum of high-value chemicals and functional materials derived from biomass-based substrates. In connection with this, furanic chemicals, such as 5-hydroxymethylfurfural (HMF) and furfural, have recently received considerable attention due to their potential...
To an increasing extent, "green chemistry" is a new chemical and engineering approach of chemistry and engineering, dedicated to make manufacturing processes and our world as a whole more sustainable world with a growing tendency. "Green chemistry" approaches are based on ecofriendly technologies, aiming to reduce or eliminate the use of solvents, or render them efficient and safer. Moreover, this scientific field is devoted to reduction or elimination of prevailing environmental and health threats, which typically accompany chemical products and traditional processes. The present book "Green Chemistry" contains 9 selected chapters, starting with a general introductory chapter on "green chemistry," and covers many recent applications and developments based on the principles of "green chemistry." This book is considered the appropriate way to communicate the advances in green materials and their applications to the scientific community. Chemists, scientists and researchers from related areas, and undergraduates involved in environmental issues and interested in approaches to improve the quality of life could find an inspiring and effective guide by reading this book.
This is the first book to present the idea of using Industry 4.0 and smart manufacturing in the microalgae industry for environmental biotechnology. It provides the latest developments on microalgae for use in environmental biotechnology, explains process analysis from an engineering point of view, and discusses the transition to smart manufacturing and how state of the art technologies can be incorporated. It covers applications, technologies, challenges, and future perspectives. • Showcases how Industry 4.0 can be applied in algae industry • Covers new ideas generated from Industry 4.0 for Industrial Internet of Things (IIoT) • Demonstrates new technologies invented to cater to Industry 4.0 in microalgae • Features worked examples related to biological systems Aimed at chemical engineers, bioengineers, and environmental engineers, this is an essential resource for researchers, academics, and industry professionals in the microalgae biotechnology field.
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution – air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for “zero discharge” can be construed as an unreal- tic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi?ed: (1) How serious is the pollution? (2) Is the technology to aba...
"Biofuels" provides state-of-the-art information on the status of biofuel production and related aspects. It includes a detailed overview of the alternative energy field and the role of biofuels as new energy sources, and gives a detailed account of the production of biodiesel from non-conventional bio-feedstocks such as algae and vegetable oils.
Algae Refinery: Up- and Downstream Processes offers complete coverage of algae refinery, including up- and downstream processes while proposing an integrated algal refinery for the advancement of existing technologies and summarizing the strategies and future perspectives of algal refinery. It provides a concise introduction to the algal science, biology, technology, and application of algae. It explains downstream and upstream steps of algal refinery for the production of algal biomass, with several social benefits. Features: Provides various aspects of algal bioprocess including upstream and downstream processes Explains the major research streams of algae structures and their pathways Covers algal-based CO2 capture technology Explores the potential applications of algae for socioeconomical benefits Deliberates algal bioremediation approach for clean and sustainable development
This book provides an overview of the latest advances in applications of nanocomposites in wastewater treatment. This book is dedicated to recent developments in the application of polymer nanocomposites to wastewater treatment. Based on their morphology and tailored compositions, polymer nanocomposites provide powerful tools for environmental remediation via selective adsorption of contaminants in complex environmental matrices. The book reviews recent progress in this field, covering various nanocomposite fabrication routes and novel applications for pollutant sensing and detection. It includes discussion of different types of nanocomposites based on metal–organic frameworks and hydrogels, while also covering related topics such as nanocomposite membranes, photocatalysts, and bio-nanocomposites for pollution abatement. Ideal for researchers and engineers in the field, this collection of contributed chapters offers a timely review of current research in nanomaterials for cost-effective pollution control technologies.