You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book reviews the emerging studies of synthetic immunology, including the development and regeneration of immune cells, immune organ development and artificial regeneration, and the synthetic approach towards understanding human immune system. Immunology has developed rapidly over the last 50 years through the incorporation of new methods and concepts in cell and molecular biology, genetics, genomics and proteomics. This progress is the result of works by many excellent researchers all over the world. Currently, immunological research has accumulated detailed knowledge on basic mechanisms of immunity and is in the process to change medical practices. Yet, due to the enormous complexity o...
Advances in Immunology, a long-established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for future. - Contributions from leading authorities and industry experts - Informs and updates on all the latest developments in the field
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory, T cell signalling and analysis of flow cytometry data sets. Contributing authors are leading scientists in the area of experimental, computational, and mathematical immunology. Each chapter includes state-of-the-art and pedagogical content, making this book accessible to readers with limited experience in T cell immunology and/or mathematical and computational modelling.
Presents the broad outline of NIH organizational structure, theprofessional staff, and their scientific and technical publications covering work done at NIH.
The pathogenic mechanisms underlying primary T-cell disorders are mainly related to molecular alterations of genes whose expression is intrinsic to hematopoietic cells. However, since the differentiation process requires a crosstalk among thymocytes and the thymic microenvironment, molecular alterations of genes, involved in the differentiation and functionality of the stromal component of the thymus, may lead to a severe T-cell defect or failure of central tolerance, as well. The first example of severe combined immunodeficiency (SCID) not related to an intrinsic alteration of the hematopoietic cell but rather of the thymic epithelial component is the Nude/SCID phenotype, inherited as an au...
The thymus is an evolutionarily ancient primary lymphoid organ common to all vertebrates in which T cell development takes place. Failing thymus function is associated with immunodeficiency and/or autoimmunity. In this volume, leading experts provide a comprehensive overview of recent advances in thymopoiesis research. The chapters cover the development of the thymic epithelial microenvironment, address the formation of a diverse and self-tolerant repertoire of T cell receptors as the basis for cellular immunity, discuss the mechanisms by which progenitor cells colonize the thymus and detail the molecular basis for T lineage decisions. The reviews illustrate the important role of the multifaceted process of thymopoiesis for adaptive immunity.
Biological signaling pathways dynamically interact with one another to form complex information networks intracellularly, intercellularly, and eventually at the level of the organism. Biology and medicine have conventionally focused on identification and characterization of functional elements in biological signaling pathways. Recently, research in this field has pursued a new approach, systems biology, to understand the dynamics, complexity, and physiological functions of the biological signaling networks. Instead of reductionistic analyses or large-scale studies of biomolecules piece by piece, systems biology emphasizes the need for interdisciplinary methods and analysis of the regulation and operation of information networks at the systems level. The contributors to this book are leading researchers in the rising field of systems biology. Readers will find not only the most recent advances in research, but also the latest information about interdisciplinary methods and related topics.
Selected as a Doody's Core Title for 2022! Defining the field of immunology for 40 years, Paul’s Fundamental Immunology continues to provide detailed, authoritative, up-to-date information that uniquely bridges the gap between basic immunology and the disease process. The fully revised 8th edition maintains the excellence established by Dr. William E. Paul, who passed away in 2015, and is now under new editorial leadership of Drs. Martin F. Flajnik, Nevil J. Singh, and Steven M. Holland. It’s an ideal reference and gold standard text for graduate students, post-doctoral fellows, basic and clinical immunologists, microbiologists and infectious disease physicians, and any physician treating diseases in which immunologic mechanisms play a role.
Research into the field of stem cell biology has developed exponentially over recent years, and is beginning to offer significant promise for unravelling the molecular basis of a multitude of disease states. Importantly, in addition to offering the opportunity to delve deeply into the mechanisms that drive disease aetiology the research is realistically opening the doors for development of targeted and personalized therapeutic applications that many considered, until recently, to be nothing more that a far fetched dream. This volume provides a timely glimpse into the methods that have been developed to instigate, and the mechanisms that have been identified to drive, the process of nuclear r...