You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the mathematical analysis of attractors and inertial manifolds. This volume deals with the existence of global attractors, inertial manifolds and with the estimation of Hausdorff fractal dimension for some dissipative nonlinear evolution equations in modern physics. Known as well as many new results about the existence, regularity and properties of inertial manifolds and approximate inertial manifolds are also presented in the first volume. The second volume will be devoted to modern analytical tools and methods in infinite-dimensional dynamical systems. Contents Attractor and its dimension estimation Inertial manifold The approximate inertial manifold
Thirteen-year-old Serogia was thrown out of his house by his drunken mother after his father died. Eleven-year-old Anya doesnt have many friends and is always sad; when she looks in the mirror she sees an ugly girl. Her ten-year-old sister Sashinka is shy, tough and fun loving. Their only living relative is their drunken father. These are just three of the children who were living at Priut Almus, a childrens shelter in St. Petersburg, Russia, when author Robert Belenky began his visits in 1998. He returned many times during the next ten years. In Tales of Priut Almus he presents his interviews with children and staff as he participates in this humane and innovative shelter unusual in that it...
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
This volume gathers personal reflections on life and literature by 44 of China's leading authors. It aims to illustrate how Chinese society and its creative writing have supported, competed and fought with each other for the past 40 years and more. Much of what is revealed here is mundane, but the pressure of bringing art to social and political causes, indeed the universal pressure to survive, forges this collection into a very human document. The strengths and weaknesses of these essays offer a window on those of modern Chinese literature itself. Realism was the favoured literary doctrine of the day, and, reflecting this, most of these essays speak for themselves - about war, revolution, betrayal and commitment.
This book includes within its scope: computational models in physics and physical chemistry; computer programs in physics and physical chemistry; computational models and programs associated with the design, control, and analysis of experiments; numerical methods and algorithms; algebraic computation; impact of advanced computer architecture and special purpose computers on computing in the physical sciences; software topics, including programming environments, languages, data bases, expert systems, and graphics packages related to physical sciences; and, analysis of computer systems performance.
This is an acessible book on the advanced symmetry methods for differential equations, including such subjects as conservation laws, Lie-Bäcklund symmetries, contact transformations, adjoint symmetries, Nöther's Theorem, mappings with some modification, potential symmetries, nonlocal symmetries, nonlocal mappings, and non-classical method. Of use to graduate students and researchers in mathematics and physics.
Applications of Fractional Calculus to Modeling in Dynamics and Chaos aims to present novel developments, trends, and applications of fractional-order derivatives with power law and Mittag-Leffler kernel in the areas of chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engineering. Non-singular and non-local fractional-order derivatives have been applied in different chapters to describe complex problems. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate-level students, educators, researchers, and scientists interested in mathematical modeling and its diverse applications. Features Discusses real-world problems, theory, and applications Covers new developments and advances in the various areas of nonlinear dynamics, signal processing, and chaos Suitable to teach master’s and/or PhD-level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences
The Institute for Mathematical Sciences at the National University of Singapore hosted a thematic program on Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications from September 2019 to March 2020. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects six expanded lecture notes with self-contained tutorials. The coverage includes mathematical models and numerical methods for multidimensional solitons in linear and nonlinear potentials; Bose-Einstein condensation (BEC) with dipole-dipole interaction, higher order interaction and spin-orbit coupling; classical and quantum turbulence; and molecular dynamics process based on the first-principle in quantum chemistry.This volume serves to inspire graduate students and researchers who will embark into original research work in these fields.